IDEAS home Printed from https://ideas.repec.org/a/vrs/offsta/v36y2020i4p827-854n5.html
   My bibliography  Save this article

Three-Form Split Questionnaire Design for Panel Surveys

Author

Listed:
  • Imbriano Paul M.

    (Department of Biostatistics, School of Public Health, University of Michigan, 1415 Washington Heights Ann Arbor, MI 48109-2029, U.S.A. Emails: pimbri@umich.edu)

  • Raghunathan Trivellore E.

    (Survey Research Center, Institute for Social Research, University of Michigan, 426 Thompson St, Ann Arbor, MI 48104, U.S.A.)

Abstract

Longitudinal or panel surveys are effective tools for measuring individual level changes in the outcome variables and their correlates. One drawback of these studies is dropout or nonresponse, potentially leading to biased results. One of the main reasons for dropout is the burden of repeatedly responding to long questionnaires. Advancements in survey administration methodology and multiple imputation software now make it possible for planned missing data designs to be implemented for improving the data quality through a reduction in survey length. Many papers have discussed implementing a planned missing data study using a split questionnaire design in the cross-sectional setting, but development of these designs in a longitudinal study has been limited. Using simulations and data from the Health and Retirement Study (HRS), we compare the performance of several methods for administering a split questionnaire design in the longitudinal setting. The results suggest that the optimal design depends on the data structure and estimand of interest. These factors must be taken into account when designing a longitudinal study with planned missing data.

Suggested Citation

  • Imbriano Paul M. & Raghunathan Trivellore E., 2020. "Three-Form Split Questionnaire Design for Panel Surveys," Journal of Official Statistics, Sciendo, vol. 36(4), pages 827-854, December.
  • Handle: RePEc:vrs:offsta:v:36:y:2020:i:4:p:827-854:n:5
    DOI: 10.2478/jos-2020-0040
    as

    Download full text from publisher

    File URL: https://doi.org/10.2478/jos-2020-0040
    Download Restriction: no

    File URL: https://libkey.io/10.2478/jos-2020-0040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jeffrey E. Zabel, 1998. "An Analysis of Attrition in the Panel Study of Income Dynamics and the Survey of Income and Program Participation with an Application to a Model of Labor Market Behavior," Journal of Human Resources, University of Wisconsin Press, vol. 33(2), pages 479-506.
    2. van Buuren, Stef & Groothuis-Oudshoorn, Karin, 2011. "mice: Multivariate Imputation by Chained Equations in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 45(i03).
    3. Elisabeth Deutskens & Ad Jong & Ko Ruyter & Martin Wetzels, 2006. "Comparing the generalizability of online and mail surveys in cross-national service quality research," Marketing Letters, Springer, vol. 17(2), pages 119-136, April.
    4. James O. Chipperfield & Margo L. Barr & David. G. Steel, 2018. "Split Questionnaire Designs: collecting only the data that you need through MCAR and MAR designs," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(8), pages 1465-1475, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Noémi Kreif & Richard Grieve & Iván Díaz & David Harrison, 2015. "Evaluation of the Effect of a Continuous Treatment: A Machine Learning Approach with an Application to Treatment for Traumatic Brain Injury," Health Economics, John Wiley & Sons, Ltd., vol. 24(9), pages 1213-1228, September.
    2. Abhilash Bandam & Eedris Busari & Chloi Syranidou & Jochen Linssen & Detlef Stolten, 2022. "Classification of Building Types in Germany: A Data-Driven Modeling Approach," Data, MDPI, vol. 7(4), pages 1-23, April.
    3. Teresa Molina Millán & Karen Macours, 2017. "Attrition in randomized control trials: Using tracking information to correct bias," FEUNL Working Paper Series novaf:wp1702, Universidade Nova de Lisboa, Faculdade de Economia.
    4. Boonstra Philip S. & Little Roderick J.A. & West Brady T. & Andridge Rebecca R. & Alvarado-Leiton Fernanda, 2021. "A Simulation Study of Diagnostics for Selection Bias," Journal of Official Statistics, Sciendo, vol. 37(3), pages 751-769, September.
    5. Christopher J Greenwood & George J Youssef & Primrose Letcher & Jacqui A Macdonald & Lauryn J Hagg & Ann Sanson & Jenn Mcintosh & Delyse M Hutchinson & John W Toumbourou & Matthew Fuller-Tyszkiewicz &, 2020. "A comparison of penalised regression methods for informing the selection of predictive markers," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-14, November.
    6. Liangyuan Hu & Lihua Li, 2022. "Using Tree-Based Machine Learning for Health Studies: Literature Review and Case Series," IJERPH, MDPI, vol. 19(23), pages 1-13, December.
    7. Norah Alyabs & Sy Han Chiou, 2022. "The Missing Indicator Approach for Accelerated Failure Time Model with Covariates Subject to Limits of Detection," Stats, MDPI, vol. 5(2), pages 1-13, May.
    8. Feldkircher, Martin, 2014. "The determinants of vulnerability to the global financial crisis 2008 to 2009: Credit growth and other sources of risk," Journal of International Money and Finance, Elsevier, vol. 43(C), pages 19-49.
    9. Fitzsimons, Emla & Malde, Bansi & Mesnard, Alice & Vera-Hernández, Marcos, 2016. "Nutrition, information and household behavior: Experimental evidence from Malawi," Journal of Development Economics, Elsevier, vol. 122(C), pages 113-126.
    10. Eunsil Seok & Akhgar Ghassabian & Yuyan Wang & Mengling Liu, 2024. "Statistical Methods for Modeling Exposure Variables Subject to Limit of Detection," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 16(2), pages 435-458, July.
    11. Ida Kubiszewski & Kenneth Mulder & Diane Jarvis & Robert Costanza, 2022. "Toward better measurement of sustainable development and wellbeing: A small number of SDG indicators reliably predict life satisfaction," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(1), pages 139-148, February.
    12. Georges Steffgen & Philipp E. Sischka & Martha Fernandez de Henestrosa, 2020. "The Quality of Work Index and the Quality of Employment Index: A Multidimensional Approach of Job Quality and Its Links to Well-Being at Work," IJERPH, MDPI, vol. 17(21), pages 1-31, October.
    13. Christopher Kath & Florian Ziel, 2018. "The value of forecasts: Quantifying the economic gains of accurate quarter-hourly electricity price forecasts," Papers 1811.08604, arXiv.org.
    14. Esef Hakan Toytok & Sungur Gürel, 2019. "Does Project Children’s University Increase Academic Self-Efficacy in 6th Graders? A Weak Experimental Design," Sustainability, MDPI, vol. 11(3), pages 1-12, February.
    15. J M van Niekerk & M C Vos & A Stein & L M A Braakman-Jansen & A F Voor in ‘t holt & J E W C van Gemert-Pijnen, 2020. "Risk factors for surgical site infections using a data-driven approach," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-14, October.
    16. Joost R. Ginkel, 2020. "Standardized Regression Coefficients and Newly Proposed Estimators for $${R}^{{2}}$$R2 in Multiply Imputed Data," Psychometrika, Springer;The Psychometric Society, vol. 85(1), pages 185-205, March.
    17. Lara Jehi & Xinge Ji & Alex Milinovich & Serpil Erzurum & Amy Merlino & Steve Gordon & James B Young & Michael W Kattan, 2020. "Development and validation of a model for individualized prediction of hospitalization risk in 4,536 patients with COVID-19," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-15, August.
    18. Matthew Carli & Mary H. Ward & Catherine Metayer & David C. Wheeler, 2022. "Imputation of Below Detection Limit Missing Data in Chemical Mixture Analysis with Bayesian Group Index Regression," IJERPH, MDPI, vol. 19(3), pages 1-17, January.
    19. Gerko Vink & Laurence E. Frank & Jeroen Pannekoek & Stef Buuren, 2014. "Predictive mean matching imputation of semicontinuous variables," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 68(1), pages 61-90, February.
    20. Tsai, Tsung-Han, 2016. "A Bayesian Approach to Dynamic Panel Models with Endogenous Rarely Changing Variables," Political Science Research and Methods, Cambridge University Press, vol. 4(3), pages 595-620, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:offsta:v:36:y:2020:i:4:p:827-854:n:5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.