IDEAS home Printed from https://ideas.repec.org/a/vrs/offsta/v36y2020i1p63-88n4.html
   My bibliography  Save this article

Statistical Challenges in Combining Survey and Auxiliary Data to Produce Official Statistics

Author

Listed:
  • Erciulescu Andreea L.

    (Westat, 1600 Research Blvd., Rockville M.D., U.S.A.)

  • Cruze Nathan B.

    (USDA National Agricultural Statistics Service, Research and Development Division, 1400 Independence Avenue, SW, Washington D.C., U.S.A.)

  • Nandram Balgobin

    (Worcester Polytechnic Institute, Mathematical Sciences, Stratton Hall, 100 Institute Road, Worcester, MA 01609-2247, Massachusetts, 01609, U.S.A.)

Abstract

Combining survey and auxiliary data to produce official statistics is gaining interest at federal agencies and among policy makers due to its efficiency. Recent studies have shown the practicality of small area estimation modeling approaches in the context of integrating data from multiple sources to improve estimation at fine levels of aggregation. In this article, agricultural predictions are constructed using a hierarchical Bayes subarea-level model, fit to data available from different sources. Auxiliary data are initially used to complement the survey data and define the prediction space, and then to define covariates for the model. Finally, not-in-sample predictions are constructed using the model output, and benchmarking constraints are imposed on the final set of in-sample and not-in-sample predictions. Unlike most of the studies discussing not-in-sample prediction, this article illustrates a method that uses the data available from multiple sources to define the prediction space. As a consequence, the resulting framework provides a larger set of nationwide predictions as candidate for official statistics, and extrapolation is not of concern. Challenges in developing the methods to combine different data sources are discussed in the context of planted acreage prediction.

Suggested Citation

  • Erciulescu Andreea L. & Cruze Nathan B. & Nandram Balgobin, 2020. "Statistical Challenges in Combining Survey and Auxiliary Data to Produce Official Statistics," Journal of Official Statistics, Sciendo, vol. 36(1), pages 63-88, March.
  • Handle: RePEc:vrs:offsta:v:36:y:2020:i:1:p:63-88:n:4
    DOI: 10.2478/jos-2020-0004
    as

    Download full text from publisher

    File URL: https://doi.org/10.2478/jos-2020-0004
    Download Restriction: no

    File URL: https://libkey.io/10.2478/jos-2020-0004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Torabi, Mahmoud & Rao, J.N.K., 2014. "On small area estimation under a sub-area level model," Journal of Multivariate Analysis, Elsevier, vol. 127(C), pages 36-55.
    2. Jae Kwang Kim & Zhonglei Wang & Zhengyuan Zhu & Nathan B. Cruze, 2018. "Combining Survey and Non-survey Data for Improved Sub-area Prediction Using a Multi-level Model," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(2), pages 175-189, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. K. Shuvo Bakar & Nicholas Biddle & Philip Kokic & Huidong Jin, 2020. "A Bayesian spatial categorical model for prediction to overlapping geographical areas in sample surveys," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(2), pages 535-563, February.
    2. Corral Rodas,Paul Andres & Kastelic,Kristen Himelein & Mcgee,Kevin Robert & Molina,Isabel, 2021. "A Map of the Poor or a Poor Map ?," Policy Research Working Paper Series 9620, The World Bank.
    3. Cai Song & Rao J. N. K. & Dumitrescu Laura & Chatrchi Golshid, 2020. "Effective transformation-based variable selection under two-fold subarea models in small area estimation," Statistics in Transition New Series, Statistics Poland, vol. 21(4), pages 68-83, August.
    4. Batana,Yele Maweki & Masaki,Takaaki & Nakamura,Shohei & Viboudoulou Vilpoux,Mervy Ever, 2021. "Estimating Poverty in Kinshasa by Dealing with Sampling and Comparability Issues," Policy Research Working Paper Series 9858, The World Bank.
    5. Song Cai & J.N.K. Rao, 2022. "Selection of Auxiliary Variables for Three-Fold Linking Models in Small Area Estimation: A Simple and Effective Method," Stats, MDPI, vol. 5(1), pages 1-11, February.
    6. Lu Chen & Luca Sartore & Habtamu Benecha & Valbona Bejleri & Balgobin Nandram, 2022. "Smoothing County-Level Sampling Variances to Improve Small Area Models’ Outputs," Stats, MDPI, vol. 5(3), pages 1-18, September.
    7. Linda J. Young & Lu Chen, 2022. "Using Small Area Estimation to Produce Official Statistics," Stats, MDPI, vol. 5(3), pages 1-17, September.
    8. Paul Corral & Kristen Himelein & Kevin McGee & Isabel Molina, 2021. "A Map of the Poor or a Poor Map?," Mathematics, MDPI, vol. 9(21), pages 1-40, November.
    9. Lu Chen & Balgobin Nandram, 2023. "Bayesian Logistic Regression Model for Sub-Areas," Stats, MDPI, vol. 6(1), pages 1-23, January.
    10. Newhouse David, 2020. "Discussion of “Small area estimation: its evolution in five decades”, by Malay Ghosh," Statistics in Transition New Series, Statistics Poland, vol. 21(4), pages 45-50, August.
    11. Newhouse,David Locke & Merfeld,Joshua David & Ramakrishnan,Anusha Pudugramam & Swartz,Tom & Lahiri,Partha, 2022. "Small Area Estimation of Monetary Poverty in Mexico Using Satellite Imagery and Machine Learning," Policy Research Working Paper Series 10175, The World Bank.
    12. Masaki,Takaaki & Newhouse,David Locke & Silwal,Ani Rudra & Bedada,Adane & Engstrom,Ryan, 2020. "Small Area Estimation of Non-Monetary Poverty with Geospatial Data," Policy Research Working Paper Series 9383, The World Bank.
    13. Andreea Erciulescu & Jianzhu Li & Tom Krenzke & Machell Town, 2024. "Hierarchical Bayes small area estimation for county-level health prevalence to having a personal doctor," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 33(4), pages 1171-1191, September.
    14. Song Cai & J. N. K. Rao & Laura Dumitrescu & Golshid Chatrchi, 2020. "Effective transformation-based variable selection under two-fold subarea models in small area estimation," Statistics in Transition New Series, Polish Statistical Association, vol. 21(4), pages 68-83, August.
    15. Camilla Salvatore, 2023. "Inference with non-probability samples and survey data integration: a science mapping study," METRON, Springer;Sapienza Università di Roma, vol. 81(1), pages 83-107, April.
    16. Jae Kwang Kim & Zhonglei Wang & Zhengyuan Zhu & Nathan B. Cruze, 2018. "Combining Survey and Non-survey Data for Improved Sub-area Prediction Using a Multi-level Model," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(2), pages 175-189, June.
    17. Lu Chen & Nathan B. Cruze & Linda J. Young, 2022. "Model-Based Estimates for Farm Labor Quantities," Stats, MDPI, vol. 5(3), pages 1-17, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:offsta:v:36:y:2020:i:1:p:63-88:n:4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.