Selection of Auxiliary Variables for Three-Fold Linking Models in Small Area Estimation: A Simple and Effective Method
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- María José Lombardía & Esther López‐Vizcaíno & Cristina Rueda, 2017. "Mixed generalized Akaike information criterion for small area models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(4), pages 1229-1252, October.
- Torabi, Mahmoud & Rao, J.N.K., 2014. "On small area estimation under a sub-area level model," Journal of Multivariate Analysis, Elsevier, vol. 127(C), pages 36-55.
- Yan Li & Partha Lahiri, 2019. "A Simple Adaptation of Variable Selection Software for Regression Models to Select Variables in Nested Error Regression Models," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(2), pages 302-317, December.
- Song Cai & J. N. K. Rao & Laura Dumitrescu & Golshid Chatrchi, 2020. "Effective transformation-based variable selection under two-fold subarea models in small area estimation," Statistics in Transition New Series, Polish Statistical Association, vol. 21(4), pages 68-83, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- María Bugallo & Domingo Morales & María Dolores Esteban & Maria Chiara Pagliarella, 2024. "Model-Based Estimation of Small Area Dissimilarity Indexes: An Application to Sex Occupational Segregation in Spain," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 174(2), pages 473-501, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yan Li, 2020. "Discussion of "Small area estimation: its evolution in five decades", by Malay Ghosh," Statistics in Transition New Series, Polish Statistical Association, vol. 21(4), pages 35-39, August.
- Cai Song & Rao J. N. K. & Dumitrescu Laura & Chatrchi Golshid, 2020. "Effective transformation-based variable selection under two-fold subarea models in small area estimation," Statistics in Transition New Series, Statistics Poland, vol. 21(4), pages 68-83, August.
- Song Cai & J. N. K. Rao & Laura Dumitrescu & Golshid Chatrchi, 2020. "Effective transformation-based variable selection under two-fold subarea models in small area estimation," Statistics in Transition New Series, Polish Statistical Association, vol. 21(4), pages 68-83, August.
- K. Shuvo Bakar & Nicholas Biddle & Philip Kokic & Huidong Jin, 2020. "A Bayesian spatial categorical model for prediction to overlapping geographical areas in sample surveys," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(2), pages 535-563, February.
- María José Lombardía & Esther López‐Vizcaíno & Cristina Rueda, 2022. "A new approach to the gender pay gap decomposition by economic activity," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(1), pages 219-245, January.
- Corral Rodas,Paul Andres & Kastelic,Kristen Himelein & Mcgee,Kevin Robert & Molina,Isabel, 2021. "A Map of the Poor or a Poor Map ?," Policy Research Working Paper Series 9620, The World Bank.
- Simona Buscemi & Antonella Plaia, 2020. "Model selection in linear mixed-effect models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(4), pages 529-575, December.
- Batana,Yele Maweki & Masaki,Takaaki & Nakamura,Shohei & Viboudoulou Vilpoux,Mervy Ever, 2021. "Estimating Poverty in Kinshasa by Dealing with Sampling and Comparability Issues," Policy Research Working Paper Series 9858, The World Bank.
- Lu Chen & Luca Sartore & Habtamu Benecha & Valbona Bejleri & Balgobin Nandram, 2022. "Smoothing County-Level Sampling Variances to Improve Small Area Models’ Outputs," Stats, MDPI, vol. 5(3), pages 1-18, September.
- Rügamer, David & Baumann, Philipp F.M. & Greven, Sonja, 2022. "Selective inference for additive and linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
- Katarzyna Reluga & María‐José Lombardía & Stefan Sperlich, 2023. "Simultaneous inference for linear mixed model parameters with an application to small area estimation," International Statistical Review, International Statistical Institute, vol. 91(2), pages 193-217, August.
- Linda J. Young & Lu Chen, 2022. "Using Small Area Estimation to Produce Official Statistics," Stats, MDPI, vol. 5(3), pages 1-17, September.
- Paul Corral & Kristen Himelein & Kevin McGee & Isabel Molina, 2021. "A Map of the Poor or a Poor Map?," Mathematics, MDPI, vol. 9(21), pages 1-40, November.
- Weijia Ren & Jianzhu Li & Andreea Erciulescu & Tom Krenzke & Leyla Mohadjer, 2022. "A Variable Selection Method for Small Area Estimation Modeling of the Proficiency of Adult Competency," Stats, MDPI, vol. 5(3), pages 1-25, July.
- Lu Chen & Balgobin Nandram, 2023. "Bayesian Logistic Regression Model for Sub-Areas," Stats, MDPI, vol. 6(1), pages 1-23, January.
- Newhouse David, 2020. "Discussion of “Small area estimation: its evolution in five decades”, by Malay Ghosh," Statistics in Transition New Series, Statistics Poland, vol. 21(4), pages 45-50, August.
- Merfeld,Joshua David & Newhouse,David Locke & Weber,Michael & Lahiri,Partha, 2022.
"Combining Survey and Geospatial Data Can Significantly Improve Gender-DisaggregatedEstimates of Labor Market Outcomes,"
Policy Research Working Paper Series
10077, The World Bank.
- Merfeld, Joshua D. & Newhouse, David & Weber, Michael & Lahiri, Partha, 2022. "Combining Survey and Geospatial Data Can Significantly Improve Gender-Disaggregated Estimates of Labor Market Outcomes," IZA Discussion Papers 15390, Institute of Labor Economics (IZA).
- Pan, Lanfeng & Li, Yehua & He, Kevin & Li, Yanming & Li, Yi, 2020. "Generalized linear mixed models with Gaussian mixture random effects: Inference and application," Journal of Multivariate Analysis, Elsevier, vol. 175(C).
- Newhouse,David Locke & Merfeld,Joshua David & Ramakrishnan,Anusha Pudugramam & Swartz,Tom & Lahiri,Partha, 2022. "Small Area Estimation of Monetary Poverty in Mexico Using Satellite Imagery and Machine Learning," Policy Research Working Paper Series 10175, The World Bank.
- Masaki,Takaaki & Newhouse,David Locke & Silwal,Ani Rudra & Bedada,Adane & Engstrom,Ryan, 2020. "Small Area Estimation of Non-Monetary Poverty with Geospatial Data," Policy Research Working Paper Series 9383, The World Bank.
More about this item
Keywords
Fay–Herriot model; information criterion; transformation; two-fold subarea model; variable selection;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jstats:v:5:y:2022:i:1:p:9-138:d:742708. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.