IDEAS home Printed from https://ideas.repec.org/a/vrs/offsta/v35y2019i2p387-408n5.html
   My bibliography  Save this article

Item Response Rates for Composite Variables

Author

Listed:
  • Eggleston Jonathan

    (U.S. Census Bureau, 4600 Silver Hill Road, Washington DC, 20233, U.S.A.)

Abstract

Item response rates frequently serve as indicators of data quality and potential nonresponse bias. However, key variables from surveys, such as total household income or net worth, are often composite variables constructed from several underlying components. Because such composite variables do not have clearly identifiable response rates, inference on the data quality of these key measures is more difficult. This article proposes three new methods for aggregating data on response rates across questions to create a measure of item response for composite variables. To compare the three methods and illustrate how they can be used (both individually and collectively) to investigate data quality, I analyze item response for net worth in the Survey of Income and Program Participation (SIPP) and the Survey of Consumer Finances (SCF). These new measures provide detailed information about net worth estimates that would be difficult to assess without an item response aggregation method. Overall, these new item response rate methods provide a new way of describing data quality for key measures in surveys and for analyzing changes in data quality over time.

Suggested Citation

  • Eggleston Jonathan, 2019. "Item Response Rates for Composite Variables," Journal of Official Statistics, Sciendo, vol. 35(2), pages 387-408, June.
  • Handle: RePEc:vrs:offsta:v:35:y:2019:i:2:p:387-408:n:5
    DOI: 10.2478/jos-2019-0018
    as

    Download full text from publisher

    File URL: https://doi.org/10.2478/jos-2019-0018
    Download Restriction: no

    File URL: https://libkey.io/10.2478/jos-2019-0018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lillard, Lee & Smith, James P & Welch, Finis, 1986. "What Do We Really Know about Wages? The Importance of Nonreporting and Census Imputation," Journal of Political Economy, University of Chicago Press, vol. 94(3), pages 489-506, June.
    2. Bound, John & Krueger, Alan B, 1991. "The Extent of Measurement Error in Longitudinal Earnings Data: Do Two Wrongs Make a Right?," Journal of Labor Economics, University of Chicago Press, vol. 9(1), pages 1-24, January.
    3. repec:mpr:mprres:6479 is not listed on IDEAS
    4. John L. Czajka with other members of the Panel on the U.S. Census Bureau's Reengineered Survey of Income Program Participation. Constance F. Citro John Karl Scholz & Editors. Committee on National Sta, "undated". "Reengineering the Survey of Income and Program Participation," Mathematica Policy Research Reports 92ffe3e10fec4587859f12cb5, Mathematica Policy Research.
    5. John L. Czajka & Amy Beyler, "undated". "Declining Response Rates in Federal Surveys: Trends and Implications (Background Paper)," Mathematica Policy Research Reports a714f76e878f4a74a6ad9f15d, Mathematica Policy Research.
    6. Christopher R. Bollinger & Barry T. Hirsch & Charles M. Hokayem & James P. Ziliak, 2019. "Trouble in the Tails? What We Know about Earnings Nonresponse 30 Years after Lillard, Smith, and Welch," Journal of Political Economy, University of Chicago Press, vol. 127(5), pages 2143-2185.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vladimir Hlasny & Paolo Verme, 2022. "The Impact of Top Incomes Biases on the Measurement of Inequality in the United States," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 84(4), pages 749-788, August.
    2. Meyer, Bruce D. & Mittag, Nikolas, 2019. "Combining Administrative and Survey Data to Improve Income Measurement," IZA Discussion Papers 12266, Institute of Labor Economics (IZA).
    3. Christopher R. Bollinger & Barry T. Hirsch, 2010. "GDP & Beyond – die europäische Perspektive," RatSWD Working Papers 165, German Data Forum (RatSWD).
    4. Michele Lalla & Patrizio Frederic & Daniela Mantovani, 2022. "The inextricable association of measurement errors and tax evasion as examined through a microanalysis of survey data matched with fiscal data: a case study," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(5), pages 1375-1401, December.
    5. Christopher R. Bollinger & Barry T. Hirsch, 2013. "Is Earnings Nonresponse Ignorable?," The Review of Economics and Statistics, MIT Press, vol. 95(2), pages 407-416, May.
    6. Michele Lalla & Maddalena Cavicchioli, 2020. "Nonresponse and measurement errors in income: matching individual survey data with administrative tax data," Department of Economics 0170, University of Modena and Reggio E., Faculty of Economics "Marco Biagi".
    7. Jenkins, Stephen P. & Rios-Avila, Fernando, 2021. "Reconciling Reports: Modelling Employment Earnings and Measurement Errors Using Linked Survey and Administrative Data," IZA Discussion Papers 14405, Institute of Labor Economics (IZA).
    8. Paolo Verme, 2023. "Predicting Poverty with Missing Incomes," Working Papers 642, ECINEQ, Society for the Study of Economic Inequality.
    9. Borjas, George J. & Hamermesh, Daniel S., 2023. "The Mismeasurement of Work Time: Implications for Wage Discrimination and Inequality," IZA Discussion Papers 16699, Institute of Labor Economics (IZA).
    10. Peter Valet & Jule Adriaans & Stefan Liebig, 2019. "Comparing survey data and administrative records on gross earnings: nonreporting, misreporting, interviewer presence and earnings inequality," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(1), pages 471-491, January.
    11. Melvin Stephens & Takashi Unayama, 2019. "Estimating the Impacts of Program Benefits: Using Instrumental Variables with Underreported and Imputed Data," The Review of Economics and Statistics, MIT Press, vol. 101(3), pages 468-475, July.
    12. Adam Bee & Joshua Mitchell & Nikolas Mittag & Jonathan Rothbaum & Carl Sanders & Lawrence Schmidt & Matthew Unrath, 2023. "National Experimental Wellbeing Statistics - Version 1," Working Papers 23-04, Center for Economic Studies, U.S. Census Bureau.
    13. Bruce D. Meyer & Nikolas Mittag, 2019. "Combining Administrative and Survey Data to Improve Income Measurement," NBER Working Papers 25738, National Bureau of Economic Research, Inc.
    14. Bollinger, Christopher R. & Hirsch, Barry & Hokayem, Charles M. & Ziliak, James P., 2018. "Trouble in the Tails? What We Know about Earnings Nonresponse Thirty Years after Lillard, Smith, and Welch," IZA Discussion Papers 11710, Institute of Labor Economics (IZA).
    15. Engelhardt, Gary V. & Purcell, Patrick J., 2021. "The minimum wage and annual earnings inequality," Economics Letters, Elsevier, vol. 207(C).
    16. James P. Ziliak & Charles Hokayem & Christopher R. Bollinger, 2022. "Trends in Earnings Volatility Using Linked Administrative and Survey Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(1), pages 12-19, December.
    17. Steve J. Davis & John Haltiwanger, 1991. "Wage Dispersion Between and Within U.S. Manufacturing Plants, 1963-1986," NBER Working Papers 3722, National Bureau of Economic Research, Inc.
    18. Molly Dahl & Thomas DeLeire & Shannon Mok, 2012. "Food Insufficiency and Income Volatility in U.S. Households: The Effects of Imputed Earnings in the Survey of Income and Program Participation: Working Paper 2012-07," Working Papers 43137, Congressional Budget Office.
    19. Klee, Mark A. & Chenevert, Rebecca L. & Wilkin, Kelly R., 2019. "Revisiting the shape of earnings nonresponse," Economics Letters, Elsevier, vol. 184(C).
    20. Barry T. Hirsch & Edward J. Schumacher, 2004. "Match Bias in Wage Gap Estimates Due to Earnings Imputation," Journal of Labor Economics, University of Chicago Press, vol. 22(3), pages 689-722, July.

    More about this item

    Keywords

    Response rates; nonresponse;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:offsta:v:35:y:2019:i:2:p:387-408:n:5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.