IDEAS home Printed from https://ideas.repec.org/a/vrs/offsta/v30y2014i1p1-21n1.html
   My bibliography  Save this article

Evaluating Mode Effects in Mixed-Mode Survey Data Using Covariate Adjustment Models

Author

Listed:
  • Vannieuwenhuyze Jorre T.A.

    (Institute for Social & Economic Research, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, United Kingdom)

  • Loosveldt Geert

    (Centre for Sociological Research, KU Leuven, Parkstraat 45, Leuven 3000, Belgium)

  • Molenberghs Geert

    (I-BioStat, KU Leuven, Leuven, and Universiteit Hasselt, Diepenbeek, Belgium)

Abstract

The confounding of selection and measurement effects between different modes is a disadvantage of mixed-mode surveys. Solutions to this problem have been suggested in several studies. Most use adjusting covariates to control selection effects. Unfortunately, these covariates must meet strong assumptions, which are generally ignored. This article discusses these assumptions in greater detail and also provides an alternative model for solving the problem. This alternative uses adjusting covariates, explaining measurement effects instead of selection effects. The application of both models is illustrated by using data from a survey on opinions about surveys, which yields mode effects in line with expectations for the latter model, and mode effects contrary to expectations for the former model. However, the validity of these results depends entirely on the (ad hoc) covariates chosen. Research into better covariates might thus be a topic for future studies.

Suggested Citation

  • Vannieuwenhuyze Jorre T.A. & Loosveldt Geert & Molenberghs Geert, 2014. "Evaluating Mode Effects in Mixed-Mode Survey Data Using Covariate Adjustment Models," Journal of Official Statistics, Sciendo, vol. 30(1), pages 1-21, March.
  • Handle: RePEc:vrs:offsta:v:30:y:2014:i:1:p:1-21:n:1
    DOI: 10.2478/jos-2014-0001
    as

    Download full text from publisher

    File URL: https://doi.org/10.2478/jos-2014-0001
    Download Restriction: no

    File URL: https://libkey.io/10.2478/jos-2014-0001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Donald B. Rubin, 2005. "Causal Inference Using Potential Outcomes: Design, Modeling, Decisions," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 322-331, March.
    2. Jorre T. A. Vannieuwenhuyze & Geert Loosveldt & Geert Molenberghs, 2012. "A Method to Evaluate Mode Effects on the Mean and Variance of a Continuous Variable in Mixed-Mode Surveys," International Statistical Review, International Statistical Institute, vol. 80(2), pages 306-322, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thomas Klausch & Barry Schouten & Joop J. Hox, 2017. "Evaluating Bias of Sequential Mixed-mode Designs Against Benchmark Surveys," Sociological Methods & Research, , vol. 46(3), pages 456-489, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salvatore Bimonte & Antonella D’Agostino, 2021. "Tourism development and residents’ well-being: Comparing two seaside destinations in Italy," Tourism Economics, , vol. 27(7), pages 1508-1525, November.
    2. Sahar Saeed & Erica E. M. Moodie & Erin C. Strumpf & Marina B. Klein, 2018. "Segmented generalized mixed effect models to evaluate health outcomes," International Journal of Public Health, Springer;Swiss School of Public Health (SSPH+), vol. 63(4), pages 547-551, May.
    3. Yiran Zhang & Andrew Ying & Steve Edland & Lon White & Ronghui Xu, 2024. "Marginal Structural Illness-Death Models for Semi-competing Risks Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 16(3), pages 668-692, December.
    4. Manuel S. González Canché, 2017. "Financial Benefits of Rapid Student Loan Repayment: An Analytic Framework Employing Two Decades of Data," The ANNALS of the American Academy of Political and Social Science, , vol. 671(1), pages 154-182, May.
    5. Almer, Christian & Winkler, Ralph, 2017. "Analyzing the effectiveness of international environmental policies: The case of the Kyoto Protocol," Journal of Environmental Economics and Management, Elsevier, vol. 82(C), pages 125-151.
    6. Sanford C. Gordon & Hannah K. Simpson, 2020. "Causes, theories, and the past in political science," Public Choice, Springer, vol. 185(3), pages 315-333, December.
    7. Angelov, Nikolay & Eliason, Marcus, 2014. "The effects of targeted labour market programs for job seekers with occupational disabilities," Working Paper Series 2014:27, IFAU - Institute for Evaluation of Labour Market and Education Policy.
    8. Mark Kattenberg & Bas Scheer & Jurre Thiel, 2023. "Causal forests with fixed effects for treatment effect heterogeneity in difference-in-differences," CPB Discussion Paper 452, CPB Netherlands Bureau for Economic Policy Analysis.
    9. Slutskin, L., 2017. "Graphical Statistical Methods for Studying Causal Effects. Bayesian Networks," Journal of the New Economic Association, New Economic Association, vol. 36(4), pages 12-30.
    10. Tianmeng Lyu & Björn Bornkamp & Guenther Mueller‐Velten & Heinz Schmidli, 2023. "Bayesian inference for a principal stratum estimand on recurrent events truncated by death," Biometrics, The International Biometric Society, vol. 79(4), pages 3792-3802, December.
    11. Riukula, Krista & Väänänen, Touko, 2024. "Estimating the Labour Market Impacts of Transport Projects in Finland," ETLA Working Papers 120, The Research Institute of the Finnish Economy.
    12. Nicholas Illenberger & Dylan S. Small & Pamela A. Shaw, 2019. "Regression to the Mean's Impact on the Synthetic Control Method: Bias and Sensitivity Analysis," Papers 1909.04706, arXiv.org.
    13. Silvana Tiedemann & Jorge Sanchez Canales & Felix Schur & Raffaele Sgarlato & Lion Hirth & Oliver Ruhnau & Jonas Peters, 2024. "Identifying Elasticities in Autocorrelated Time Series Using Causal Graphs," Papers 2409.15530, arXiv.org.
    14. Gary Henry & Roderick Rose & Doug Lauen, 2014. "Are value-added models good enough for teacher evaluations? Assessing commonly used models with simulated and actual data," Investigaciones de Economía de la Educación volume 9, in: Adela García Aracil & Isabel Neira Gómez (ed.), Investigaciones de Economía de la Educación 9, edition 1, volume 9, chapter 20, pages 383-405, Asociación de Economía de la Educación.
    15. Steven M. Smith, 2019. "The Relative Economic Merits of Alternative Water Rights," Working Papers 2019-08, Colorado School of Mines, Division of Economics and Business.
    16. Christian Almer & Ralph Winkler, 2012. "The Effect of Kyoto Emission Targets on Domestic CO2 Emissions: A Synthetic Control Approach," Diskussionsschriften dp1202, Universitaet Bern, Departement Volkswirtschaft.
    17. Horvath, Akos & Lang, Peter, 2021. "Do loan subsidies boost the real activity of small firms?," Journal of Banking & Finance, Elsevier, vol. 122(C).
    18. Emily S. Taylor Poppe, 2016. "Homeowner Representation in the Foreclosure Crisis," Journal of Empirical Legal Studies, John Wiley & Sons, vol. 13(4), pages 809-836, December.
    19. Peter McCullagh, 2008. "Sampling bias and logistic models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(4), pages 643-677, September.
    20. Necati Ertekin & Jeffrey D. Shulman & Haipeng (Allan) Chen, 2019. "On the Profitability of Stacked Discounts: Identifying Revenue and Cost Effects of Discount Framing," Marketing Science, INFORMS, vol. 38(2), pages 317-342, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:offsta:v:30:y:2014:i:1:p:1-21:n:1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.