IDEAS home Printed from https://ideas.repec.org/a/vrs/manmar/v13y2018i2p946-965n7.html
   My bibliography  Save this article

Modeling systems thinking in action among higher education leaders with fuzzy multi-criteria decision making

Author

Listed:
  • Shukla Divya

    (St. Theresa International College, Bangkok, Thailand)

Abstract

The college and university systems are more complex and required persistent approach towards adoption and transformation. Highly vulnerable environment portrays the need to visualize the regular and strategic issues with the larger perspectives as a whole and develop a model which is more focused towards sustainability and reformation. The current study has attempted to conceptualize systems thinking in action model which consists of four stages of action cycle; diagnosis and analysis, modeling, intervention and review and lessons learned. This is attempting to evaluate the systems thinking among the educational leaders in higher education in Thailand through the fuzzy multi-criteria decision-making method. The study has found that leaders are adopting systems thinking in the moderate level, however, the first three stages are found less in practice and more in perceived importance. The study found that there is higher need of calling for collaborative, cooperative and participation of stakeholders’ involvement. The study has further given managerial implications.

Suggested Citation

  • Shukla Divya, 2018. "Modeling systems thinking in action among higher education leaders with fuzzy multi-criteria decision making," Management & Marketing, Sciendo, vol. 13(2), pages 946-965, June.
  • Handle: RePEc:vrs:manmar:v:13:y:2018:i:2:p:946-965:n:7
    DOI: 10.2478/mmcks-2018-0015
    as

    Download full text from publisher

    File URL: https://doi.org/10.2478/mmcks-2018-0015
    Download Restriction: no

    File URL: https://libkey.io/10.2478/mmcks-2018-0015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. R. E. Bellman & L. A. Zadeh, 1970. "Decision-Making in a Fuzzy Environment," Management Science, INFORMS, vol. 17(4), pages 141-164, December.
    2. Pandey, Mukesh Mohan, 2016. "Evaluating the service quality of airports in Thailand using fuzzy multi-criteria decision making method," Journal of Air Transport Management, Elsevier, vol. 57(C), pages 241-249.
    3. S Clarke & B Lehaney, 2000. "Mixing methodologies for information systems development and strategy: A higher education case study," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 51(5), pages 542-556, May.
    4. W J Gregory & G Midgley, 2000. "Planning for disaster: developing a multi-agency counselling service," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 51(3), pages 278-290, March.
    5. Moti Frank, 2010. "Assessing the interest for systems engineering positions and other engineering positions' required capacity for engineering systems thinking (CEST)," Systems Engineering, John Wiley & Sons, vol. 13(2), pages 161-174, June.
    6. Temel, Tugrul, 2005. "A systems approach to malaria control: an institutional perspective," Health Policy, Elsevier, vol. 71(2), pages 161-180, February.
    7. Heidi L. Davidz & Deborah J. Nightingale, 2008. "Enabling systems thinking to accelerate the development of senior systems engineers," Systems Engineering, John Wiley & Sons, vol. 11(1), pages 1-14, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mingers, John & White, Leroy, 2010. "A review of the recent contribution of systems thinking to operational research and management science," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1147-1161, December.
    2. Pandey, Mukesh Mohan, 2020. "Evaluating the strategic design parameters of airports in Thailand to meet service expectations of Low-Cost Airlines using the Fuzzy-based QFD method," Journal of Air Transport Management, Elsevier, vol. 82(C).
    3. Vuciterna, Rina & Thomsen, Michael & Popp, Jennie & Musliu, Arben, 2017. "Efficiency and Competitiveness of Kosovo Raspberry Producers," 2017 Annual Meeting, February 4-7, 2017, Mobile, Alabama 252770, Southern Agricultural Economics Association.
    4. Collan, Mikael, 2008. "New Method for Real Option Valuation Using Fuzzy Numbers," Working Papers 466, IAMSR, Åbo Akademi.
    5. Wenyao Niu & Yuan Rong & Liying Yu & Lu Huang, 2022. "A Novel Hybrid Group Decision Making Approach Based on EDAS and Regret Theory under a Fermatean Cubic Fuzzy Environment," Mathematics, MDPI, vol. 10(17), pages 1-30, August.
    6. de Andres-Sanchez, Jorge, 2007. "Claim reserving with fuzzy regression and Taylor's geometric separation method," Insurance: Mathematics and Economics, Elsevier, vol. 40(1), pages 145-163, January.
    7. Mikhailov, L., 2004. "A fuzzy approach to deriving priorities from interval pairwise comparison judgements," European Journal of Operational Research, Elsevier, vol. 159(3), pages 687-704, December.
    8. Hongyi Sun & Bingqian Zhang & Wenbin Ni, 2022. "A Hybrid Model Based on SEM and Fuzzy TOPSIS for Supplier Selection," Mathematics, MDPI, vol. 10(19), pages 1-19, September.
    9. Liu, Yong-Jun & Zhang, Wei-Guo, 2015. "A multi-period fuzzy portfolio optimization model with minimum transaction lots," European Journal of Operational Research, Elsevier, vol. 242(3), pages 933-941.
    10. Sakawa, Masatoshi & Kato, Kosuke, 1998. "An interactive fuzzy satisficing method for structured multiobjective linear fractional programs with fuzzy numbers," European Journal of Operational Research, Elsevier, vol. 107(3), pages 575-589, June.
    11. Sajid Ali & Sang-Moon Lee & Choon-Man Jang, 2017. "Determination of the Most Optimal On-Shore Wind Farm Site Location Using a GIS-MCDM Methodology: Evaluating the Case of South Korea," Energies, MDPI, vol. 10(12), pages 1-22, December.
    12. Bogdana Stanojević & Milan Stanojević & Sorin Nădăban, 2021. "Reinstatement of the Extension Principle in Approaching Mathematical Programming with Fuzzy Numbers," Mathematics, MDPI, vol. 9(11), pages 1-16, June.
    13. Svajone Bekesiene & Serhii Mashchenko, 2023. "On Nash Equilibria in a Finite Game for Fuzzy Sets of Strategies," Mathematics, MDPI, vol. 11(22), pages 1-12, November.
    14. Qian-Yun Tan & Cui-Ping Wei & Qi Liu & Xiang-Qian Feng, 2016. "The Hesitant Fuzzy Linguistic TOPSIS Method Based on Novel Information Measures," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(05), pages 1-22, October.
    15. Hsiao, Tzy-yih, 2006. "Establish standards of standard costing with the application of convergent gray zone test," European Journal of Operational Research, Elsevier, vol. 168(2), pages 593-611, January.
    16. Zola, Fernanda Cavicchioli & Colmenero, João Carlos & Aragão, Franciely Velozo & Rodrigues, Thaisa & Junior, Aldo Braghini, 2020. "Multicriterial model for selecting a charcoal kiln," Energy, Elsevier, vol. 190(C).
    17. Adel Hatami-Marbini & Madjid Tavana & Kobra Gholami & Zahra Ghelej Beigi, 2015. "A Bounded Data Envelopment Analysis Model in a Fuzzy Environment with an Application to Safety in the Semiconductor Industry," Journal of Optimization Theory and Applications, Springer, vol. 164(2), pages 679-701, February.
    18. Manuel Casal-Guisande & Alberto Comesaña-Campos & Alejandro Pereira & José-Benito Bouza-Rodríguez & Jorge Cerqueiro-Pequeño, 2022. "A Decision-Making Methodology Based on Expert Systems Applied to Machining Tools Condition Monitoring," Mathematics, MDPI, vol. 10(3), pages 1-30, February.
    19. James Liou & Mei-Ling Chuang, 2010. "Evaluating corporate image and reputation using fuzzy MCDM approach in airline market," Quality & Quantity: International Journal of Methodology, Springer, vol. 44(6), pages 1079-1091, October.
    20. Tan, Raymond R. & Aviso, Kathleen B. & Barilea, Ivan U. & Culaba, Alvin B. & Cruz, Jose B., 2012. "A fuzzy multi-regional input–output optimization model for biomass production and trade under resource and footprint constraints," Applied Energy, Elsevier, vol. 90(1), pages 154-160.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:manmar:v:13:y:2018:i:2:p:946-965:n:7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.