IDEAS home Printed from https://ideas.repec.org/a/vrs/logitl/v15y2024i1p12n1001.html
   My bibliography  Save this article

The Multi-Year Period Analysis of the Air Freight Industry Pre-and Post-COVID-19

Author

Listed:
  • Inan Tuzun Tolga

    (Bahcesehir University, Department of Pilotage, 34353, Besiktas, Istanbul, Turkey)

Abstract

The paper aims to analyze air metric tons, gross logistics revenues, and cargo tonne kilometers (CTK) to benchmark pre-COVID (2014-2019) and post-COVID (2020-2022) periods using statistical methods, including mean values, standard deviation, variance, covariance, correlation, and T-tests. The findings reveal substantial decreases in all three variables in the post-COVID period, highlighting the significant impact of the pandemic on the air-freight industry. Specifically, the mean air metric tons decreased from 3,276,888 pre-COVID to 1,021,272 post-COVID; gross logistics revenues dropped from $6,155.37 million to $2,114.91 million, and CTK declined from 7,984.25 to 2,687.36. The reduced standard deviation and variance indicate less variability in the post-COVID period. Additionally, strong positive correlations between pre-COVID and post-COVID variables indicate consistent trends across the two periods. The paper’s originality lies in its findings which emphasize the need for the air freight industry to adapt and develop strategies mitigating the effects of future disruptions, underscoring the pandemic's profound impact on air freight operations and financial performance.

Suggested Citation

  • Inan Tuzun Tolga, 2024. "The Multi-Year Period Analysis of the Air Freight Industry Pre-and Post-COVID-19," LOGI – Scientific Journal on Transport and Logistics, Sciendo, vol. 15(1), pages 1-12.
  • Handle: RePEc:vrs:logitl:v:15:y:2024:i:1:p:12:n:1001
    DOI: 10.2478/logi-2024-0017
    as

    Download full text from publisher

    File URL: https://doi.org/10.2478/logi-2024-0017
    Download Restriction: no

    File URL: https://libkey.io/10.2478/logi-2024-0017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Can Ding & Li Liu & Yi Zheng & Jianxiu Liao & Wenxing Huang, 2022. "Role of Distribution Centers Disruptions in New Retail Supply Chain: An Analysis Experiment," Sustainability, MDPI, vol. 14(11), pages 1-17, May.
    2. Dmitry Ivanov, 2017. "Simulation-based ripple effect modelling in the supply chain," International Journal of Production Research, Taylor & Francis Journals, vol. 55(7), pages 2083-2101, April.
    3. Agnieszka Dudziak & Monika Stoma & Emilia Osmólska, 2023. "Analysis of Consumer Behaviour in the Context of the Place of Purchasing Food Products with Particular Emphasis on Local Products," IJERPH, MDPI, vol. 20(3), pages 1-23, January.
    4. Melo, M.T. & Nickel, S. & Saldanha-da-Gama, F., 2009. "Facility location and supply chain management - A review," European Journal of Operational Research, Elsevier, vol. 196(2), pages 401-412, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dmitry Ivanov & Alexandre Dolgui & Boris Sokolov & Marina Ivanova, 2017. "Literature review on disruption recovery in the supply chain," International Journal of Production Research, Taylor & Francis Journals, vol. 55(20), pages 6158-6174, October.
    2. Becker, Tristan & Lier, Stefan & Werners, Brigitte, 2019. "Value of modular production concepts in future chemical industry production networks," European Journal of Operational Research, Elsevier, vol. 276(3), pages 957-970.
    3. Venn, Tyron J. & Dorries, Jack W. & McGavin, Robert L., 2021. "A mathematical model to support investment in veneer and LVL manufacturing in subtropical eastern Australia," Forest Policy and Economics, Elsevier, vol. 128(C).
    4. Bartosz Sawik, 2024. "Optimizing Last-Mile Delivery: A Multi-Criteria Approach with Automated Smart Lockers, Capillary Distribution and Crowdshipping," Logistics, MDPI, vol. 8(2), pages 1-29, May.
    5. Sauvey, Christophe & Melo, Teresa & Correia, Isabel, 2019. "Two-phase heuristics for a multi-period capacitated facility location problem with service-differentiated customers," Technical Reports on Logistics of the Saarland Business School 16, Saarland University of Applied Sciences (htw saar), Saarland Business School.
    6. M. Fattahi & M. Mahootchi & S. M. Moattar Husseini, 2016. "Integrated strategic and tactical supply chain planning with price-sensitive demands," Annals of Operations Research, Springer, vol. 242(2), pages 423-456, July.
    7. Hasani, Aliakbar & Khosrojerdi, Amirhossein, 2016. "Robust global supply chain network design under disruption and uncertainty considering resilience strategies: A parallel memetic algorithm for a real-life case study," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 87(C), pages 20-52.
    8. Sabet, Ehsan & Yazdani, Baback & Kian, Ramez & Galanakis, Kostas, 2020. "A strategic and global manufacturing capacity management optimisation model: A Scenario-based multi-stage stochastic programming approach," Omega, Elsevier, vol. 93(C).
    9. Maureen S. Golan & Laura H. Jernegan & Igor Linkov, 2020. "Trends and applications of resilience analytics in supply chain modeling: systematic literature review in the context of the COVID-19 pandemic," Environment Systems and Decisions, Springer, vol. 40(2), pages 222-243, June.
    10. Jesus Gonzalez-Feliu, 2013. "Vehicle Routing in Multi-Echelon Distribution Systems with Cross-Docking: A Systematic Lexical-Metanarrative Analysis," Post-Print halshs-00834573, HAL.
    11. Majid Eskandarpour & Pierre Dejax & Olivier Péton, 2019. "Multi-Directional Local Search for Sustainable Supply Chain Network Design," Post-Print hal-02407741, HAL.
    12. Maria Ghufran & Khurram Iqbal Ahmad Khan & Fahim Ullah & Wesam Salah Alaloul & Muhammad Ali Musarat, 2022. "Key Enablers of Resilient and Sustainable Construction Supply Chains: A Systems Thinking Approach," Sustainability, MDPI, vol. 14(19), pages 1-19, September.
    13. Shabnam Rekabi & Ali Ghodratnama & Amir Azaron, 2022. "Designing pharmaceutical supply chain networks with perishable items considering congestion," Operational Research, Springer, vol. 22(4), pages 4159-4219, September.
    14. Junming Liu & Weiwei Chen & Jingyuan Yang & Hui Xiong & Can Chen, 2022. "Iterative Prediction-and-Optimization for E-Logistics Distribution Network Design," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 769-789, March.
    15. Zhalechian, M. & Tavakkoli-Moghaddam, R. & Zahiri, B. & Mohammadi, M., 2016. "Sustainable design of a closed-loop location-routing-inventory supply chain network under mixed uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 89(C), pages 182-214.
    16. Thomé, Antonio Márcio T. & Scavarda, Luiz Felipe & Pires, Sílvio R.I. & Ceryno, Paula & Klingebiel, Katja, 2014. "A multi-tier study on supply chain flexibility in the automotive industry," International Journal of Production Economics, Elsevier, vol. 158(C), pages 91-105.
    17. Olivares-Benitez, Elias & Ríos-Mercado, Roger Z. & González-Velarde, José Luis, 2013. "A metaheuristic algorithm to solve the selection of transportation channels in supply chain design," International Journal of Production Economics, Elsevier, vol. 145(1), pages 161-172.
    18. Chloe Kim Glaeser & Marshall Fisher & Xuanming Su, 2019. "Optimal Retail Location: Empirical Methodology and Application to Practice," Service Science, INFORMS, vol. 21(1), pages 86-102, January.
    19. Laura Calvet & Rocio de la Torre & Anita Goyal & Mage Marmol & Angel A. Juan, 2020. "Modern Optimization and Simulation Methods in Managerial and Business Economics: A Review," Administrative Sciences, MDPI, vol. 10(3), pages 1-23, July.
    20. Camilo Ortiz-Astorquiza & Ivan Contreras & Gilbert Laporte, 2019. "An Exact Algorithm for Multilevel Uncapacitated Facility Location," Transportation Science, INFORMS, vol. 53(4), pages 1085-1106, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:logitl:v:15:y:2024:i:1:p:12:n:1001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.