IDEAS home Printed from https://ideas.repec.org/a/vrs/itmasc/v17y2014i1p50-54n7.html
   My bibliography  Save this article

Application of Fuzzy Logic for Risk Assessment/ Izplūdušās loģikas pielietojums risku analīzē/ Применение нечеткой логики для анализа рисков

Author

Listed:
  • Radionovs Andrejs
  • Uzhga-Rebrov Oleg

    (Rezekne Higher Education Institution)

Abstract

Оценка рисков является важной задачей во многих областях человеческой деятельности: экономической, технической, экологической и т. д. Растущее беспокойство по поводу ухудшающегося состояния окружающей среды и возрастание потенциальных рисков, связанных со многими видами деятельности человека и использованием новых технологий, вызывают стремительное увеличение интереса к оценке и управлению экологических рисков. В случае наличия достаточной исходной информации предварительная оценка риска осуществляется на основе статистических методов. К сожалению, наличие достаточного статистического материала в оценке экологических рисков является скорее исключением, чем правилом. В таком случае, оценка риска должна проводиться в условиях отсутствия, недостаточности или неопределенности информации. Исторически первым типом неопределённости, для которого были разработаны теоретические и практические основы, были шансы наступления случайных событий (вероятностные неопределённости). В настоящее время теория вероятности предоставляет мощный математический аппарат для управления неопределённостью в различных областях человеческой деятельности. Для снижения влияния недостатка объективной информации часто используются оценки экспертов о потенциальных потерях и вероятности события. Эксперты на основе своих профессиональных знаний, опыта и, иногда, интуиции могут представить необходимые для анализа данные. Разработаны методы для получения и использования неопределенных вероятностных оценок, к ним относятся: интервальные вероятности, вероятности второго порядка, метод нечеткой логики и т. д. В данной статье описан процесс анализа экологического риска методами нечеткой логики на примере утечки токсических выбросов на химическом заводе. Заявленный подход на основе нечеткой логики может быть использован консультантами по оценке риска на химических заводах для принятия необходимых решений в ситуациях, когда химические выбросы могут нанести вред не только окружающей среде, но и здоровью людей

Suggested Citation

  • Radionovs Andrejs & Uzhga-Rebrov Oleg, 2014. "Application of Fuzzy Logic for Risk Assessment/ Izplūdušās loģikas pielietojums risku analīzē/ Применение нечеткой логики для анализа рисков," Information Technology and Management Science, Sciendo, vol. 17(1), pages 50-54, December.
  • Handle: RePEc:vrs:itmasc:v:17:y:2014:i:1:p:50-54:n:7
    DOI: 10.1515/itms-2014-0007
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/itms-2014-0007
    Download Restriction: no

    File URL: https://libkey.io/10.1515/itms-2014-0007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. R. E. Bellman & L. A. Zadeh, 1970. "Decision-Making in a Fuzzy Environment," Management Science, INFORMS, vol. 17(4), pages 141-164, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vuciterna, Rina & Thomsen, Michael & Popp, Jennie & Musliu, Arben, 2017. "Efficiency and Competitiveness of Kosovo Raspberry Producers," 2017 Annual Meeting, February 4-7, 2017, Mobile, Alabama 252770, Southern Agricultural Economics Association.
    2. Gourav Gupta & Shivani & Deepika Rani, 2024. "Neutrosophic goal programming approach for multi-objective fixed-charge transportation problem with neutrosophic parameters," OPSEARCH, Springer;Operational Research Society of India, vol. 61(3), pages 1274-1300, September.
    3. Berna Tektas Sivrikaya & Ferhan Cebi & Hasan Hüseyin Turan & Nihat Kasap & Dursun Delen, 2017. "A fuzzy long-term investment planning model for a GenCo in a hybrid electricity market considering climate change impacts," Information Systems Frontiers, Springer, vol. 19(5), pages 975-991, October.
    4. Collan, Mikael, 2008. "New Method for Real Option Valuation Using Fuzzy Numbers," Working Papers 466, IAMSR, Åbo Akademi.
    5. Kim, Jong Soon & Whang, Kyu-Seung, 1998. "A tolerance approach to the fuzzy goal programming problems with unbalanced triangular membership function," European Journal of Operational Research, Elsevier, vol. 107(3), pages 614-624, June.
    6. Berna Tektaş & Hasan Hüseyin Turan & Nihat Kasap & Ferhan Çebi & Dursun Delen, 2022. "A Fuzzy Prescriptive Analytics Approach to Power Generation Capacity Planning," Energies, MDPI, vol. 15(9), pages 1-26, April.
    7. Chen, Lisa Y. & Wang, Tien-Chin, 2009. "Optimizing partners' choice in IS/IT outsourcing projects: The strategic decision of fuzzy VIKOR," International Journal of Production Economics, Elsevier, vol. 120(1), pages 233-242, July.
    8. Víctor G. Alfaro-García & Anna M. Gil-Lafuente & Gerardo G. Alfaro Calderón, 2017. "A fuzzy approach to a municipality grouping model towards creation of synergies," Computational and Mathematical Organization Theory, Springer, vol. 23(3), pages 391-408, September.
    9. Aghayi, Nazila & Maleki, Bentolhoda, 2016. "Efficiency measurement of DMUs with undesirable outputs under uncertainty based on the directional distance function: Application on bank industry," Energy, Elsevier, vol. 112(C), pages 376-387.
    10. Wenyao Niu & Yuan Rong & Liying Yu & Lu Huang, 2022. "A Novel Hybrid Group Decision Making Approach Based on EDAS and Regret Theory under a Fermatean Cubic Fuzzy Environment," Mathematics, MDPI, vol. 10(17), pages 1-30, August.
    11. de Andres-Sanchez, Jorge, 2007. "Claim reserving with fuzzy regression and Taylor's geometric separation method," Insurance: Mathematics and Economics, Elsevier, vol. 40(1), pages 145-163, January.
    12. Mikhailov, L., 2004. "A fuzzy approach to deriving priorities from interval pairwise comparison judgements," European Journal of Operational Research, Elsevier, vol. 159(3), pages 687-704, December.
    13. Hongyi Sun & Bingqian Zhang & Wenbin Ni, 2022. "A Hybrid Model Based on SEM and Fuzzy TOPSIS for Supplier Selection," Mathematics, MDPI, vol. 10(19), pages 1-19, September.
    14. Liu, Yong-Jun & Zhang, Wei-Guo, 2015. "A multi-period fuzzy portfolio optimization model with minimum transaction lots," European Journal of Operational Research, Elsevier, vol. 242(3), pages 933-941.
    15. Sakawa, Masatoshi & Kato, Kosuke, 1998. "An interactive fuzzy satisficing method for structured multiobjective linear fractional programs with fuzzy numbers," European Journal of Operational Research, Elsevier, vol. 107(3), pages 575-589, June.
    16. Sajid Ali & Sang-Moon Lee & Choon-Man Jang, 2017. "Determination of the Most Optimal On-Shore Wind Farm Site Location Using a GIS-MCDM Methodology: Evaluating the Case of South Korea," Energies, MDPI, vol. 10(12), pages 1-22, December.
    17. David Opresnik & Maurizio Fiasché & Marco Taisch & Manuel Hirsch, 0. "An evolving fuzzy inference system for extraction of rule set for planning a product–service strategy," Information Technology and Management, Springer, vol. 0, pages 1-17.
    18. Bogdana Stanojević & Milan Stanojević & Sorin Nădăban, 2021. "Reinstatement of the Extension Principle in Approaching Mathematical Programming with Fuzzy Numbers," Mathematics, MDPI, vol. 9(11), pages 1-16, June.
    19. Svajone Bekesiene & Serhii Mashchenko, 2023. "On Nash Equilibria in a Finite Game for Fuzzy Sets of Strategies," Mathematics, MDPI, vol. 11(22), pages 1-12, November.
    20. V. Alpagut Yavuz, 2016. "An Analysis of Job Change Decision Using a Hybrid Mcdm Method: A Comparative Analysis," International Journal of Business and Social Research, MIR Center for Socio-Economic Research, vol. 6(3), pages 60-75, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:itmasc:v:17:y:2014:i:1:p:50-54:n:7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.