IDEAS home Printed from https://ideas.repec.org/a/mir/mirbus/v6y2016i3p60-75.html
   My bibliography  Save this article

An Analysis of Job Change Decision Using a Hybrid Mcdm Method: A Comparative Analysis

Author

Listed:
  • V. Alpagut Yavuz

    (Mustafa Kemal University, Turkey.)

Abstract

This paper investigates the decision process relating to job change which mostly depends on individual’s expectations about a job. Failing to fully understand the factors shaping these expectations leads to dissatisfaction and poor work performance; which produces unwanted consequences for both individuals and businesses. Since job change decision is defined as a multiple criteria decision making (MCDM) problem. This study uses a hybrid approach as a methodology combining fuzzy Analytic Hierarchy Analysis (AHP) and fuzzy TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) for the job change decision of a faculty working in a university. In this approach, while the use of fuzzy AHP method helps determine the weight of the decision criteria; fuzzy TOPSIS enables the evaluation of the alternatives. In order to investigate the methods’ applicability in multiple dimensions of decision problem space, a comparison analysis is conducted with the three methodologies; fuzzy AHP, fuzzy TOPSIS and the proposed hybrid approach (named fuzzy AHP-TOPSIS) in the same decision making context. Four factors are considered for the comparison: adequacy to changes of criteria or alternatives; agility in the decision process; computational complexity; and the number of criteria and alternatives. Analysis shows that three methods achieve the same results. This verifies their robustness and indicates that MCDM methods are viable in job change decisions. However; comparison analysis shows that based on the four factors; the proposed hybrid fuzzy AHP-TOPSIS method provide more consistent results than fuzzy AHP and fuzzy TOPSIS methods. Thus the proposed hybrid fuzzy AHP-TOPSIS method is more appropriate to use on a wide range of job change decision problems.

Suggested Citation

  • V. Alpagut Yavuz, 2016. "An Analysis of Job Change Decision Using a Hybrid Mcdm Method: A Comparative Analysis," International Journal of Business and Social Research, MIR Center for Socio-Economic Research, vol. 6(3), pages 60-75, March.
  • Handle: RePEc:mir:mirbus:v:6:y:2016:i:3:p:60-75
    as

    Download full text from publisher

    File URL: http://thejournalofbusiness.org/index.php/site/article/view/935/595
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. R. E. Bellman & L. A. Zadeh, 1970. "Decision-Making in a Fuzzy Environment," Management Science, INFORMS, vol. 17(4), pages 141-164, December.
    2. Pandian Vasant & Arijit Bhattacharya & Ajith Abraham, 2008. "Measurement of Level-of-Satisfaction of Decision Maker in Intelligent Fuzzy-MCDM Theory: A Generalized Approach," Springer Optimization and Its Applications, in: Cengiz Kahraman (ed.), Fuzzy Multi-Criteria Decision Making, pages 235-261, Springer.
    3. Chen, Chen-Tung & Lin, Ching-Torng & Huang, Sue-Fn, 2006. "A fuzzy approach for supplier evaluation and selection in supply chain management," International Journal of Production Economics, Elsevier, vol. 102(2), pages 289-301, August.
    4. Cheng, Ching-Hsue, 1997. "Evaluating naval tactical missile systems by fuzzy AHP based on the grade value of membership function," European Journal of Operational Research, Elsevier, vol. 96(2), pages 343-350, January.
    5. Wang, Ying-Ming & Luo, Ying & Hua, Zhongsheng, 2008. "On the extent analysis method for fuzzy AHP and its applications," European Journal of Operational Research, Elsevier, vol. 186(2), pages 735-747, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. V. Alpagut Yavuz, 2016. "An Analysis of Job Change Decision Using a Hybrid Mcdm Method: A Comparative Analysis," International Journal of Business and Social Research, LAR Center Press, vol. 6(3), pages 60-75, March.
    2. Chen, Lisa Y. & Wang, Tien-Chin, 2009. "Optimizing partners' choice in IS/IT outsourcing projects: The strategic decision of fuzzy VIKOR," International Journal of Production Economics, Elsevier, vol. 120(1), pages 233-242, July.
    3. Sajid Ali & Sang-Moon Lee & Choon-Man Jang, 2017. "Determination of the Most Optimal On-Shore Wind Farm Site Location Using a GIS-MCDM Methodology: Evaluating the Case of South Korea," Energies, MDPI, vol. 10(12), pages 1-22, December.
    4. Kannan, Devika & Jabbour, Ana Beatriz Lopes de Sousa & Jabbour, Charbel José Chiappetta, 2014. "Selecting green suppliers based on GSCM practices: Using fuzzy TOPSIS applied to a Brazilian electronics company," European Journal of Operational Research, Elsevier, vol. 233(2), pages 432-447.
    5. Nitidetch Koohathongsumrit & Pongchanun Luangpaiboon, 2022. "An integrated FAHP–ZODP approach for strategic marketing information system project selection," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 43(6), pages 1792-1809, September.
    6. Ruchi Mishra & Rajesh Kr Singh & Venkatesh Mani, 2023. "A hybrid multi criteria decision-making framework to facilitate omnichannel adoption in logistics: an empirical case study," Annals of Operations Research, Springer, vol. 326(2), pages 685-719, July.
    7. Mohamed Hanine & Omar Boutkhoum & Abderrafie El Maknissi & Abdessadek Tikniouine & Tarik Agouti, 2016. "Decision making under uncertainty using PEES–fuzzy AHP–fuzzy TOPSIS methodology for landfill location selection," Environment Systems and Decisions, Springer, vol. 36(4), pages 351-367, December.
    8. Mohammed, Ahmed & Harris, Irina & Govindan, Kannan, 2019. "A hybrid MCDM-FMOO approach for sustainable supplier selection and order allocation," International Journal of Production Economics, Elsevier, vol. 217(C), pages 171-184.
    9. Baskaran, Venkatesan & Nachiappan, Subramanian & Rahman, Shams, 2012. "Indian textile suppliers' sustainability evaluation using the grey approach," International Journal of Production Economics, Elsevier, vol. 135(2), pages 647-658.
    10. Lokesh Nagar & Pankaj Dutta & Karuna Jain, 2014. "An integrated supply chain model for new products with imprecise production and supply under scenario dependent fuzzy random demand," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(5), pages 873-887, May.
    11. Colubi, Ana & Ramos-Guajardo, Ana Belén, 2023. "Fuzzy sets and (fuzzy) random sets in Econometrics and Statistics," Econometrics and Statistics, Elsevier, vol. 26(C), pages 84-98.
    12. Hatami-Marbini, Adel & Tavana, Madjid, 2011. "An extension of the Electre I method for group decision-making under a fuzzy environment," Omega, Elsevier, vol. 39(4), pages 373-386, August.
    13. Wątróbski, Jarosław & Jankowski, Jarosław & Ziemba, Paweł & Karczmarczyk, Artur & Zioło, Magdalena, 2019. "Generalised framework for multi-criteria method selection," Omega, Elsevier, vol. 86(C), pages 107-124.
    14. Yu-Jie Wang, 2023. "Extending Quality Function Deployment and Analytic Hierarchy Process under Interval-Valued Fuzzy Environment for Evaluating Port Sustainability," Sustainability, MDPI, vol. 15(7), pages 1-19, March.
    15. Kiracı, Kasım & Akan, Ercan, 2020. "Aircraft selection by applying AHP and TOPSIS in interval type-2 fuzzy sets," Journal of Air Transport Management, Elsevier, vol. 89(C).
    16. Shen, Lixin & Olfat, Laya & Govindan, Kannan & Khodaverdi, Roohollah & Diabat, Ali, 2013. "A fuzzy multi criteria approach for evaluating green supplier's performance in green supply chain with linguistic preferences," Resources, Conservation & Recycling, Elsevier, vol. 74(C), pages 170-179.
    17. Bihter Gizem Demircan & Kaan Yetilmezsoy, 2023. "A Hybrid Fuzzy AHP-TOPSIS Approach for Implementation of Smart Sustainable Waste Management Strategies," Sustainability, MDPI, vol. 15(8), pages 1-23, April.
    18. Shubham Gupta & Raghav Khanna & Pranay Kohli & Sarthak Agnihotri & Umang Soni & M. Asjad, 2023. "Risk evaluation of electric vehicle charging infrastructure using Fuzzy AHP – a case study in India," Operations Management Research, Springer, vol. 16(1), pages 245-258, March.
    19. Irina Vinogradova-Zinkevič, 2023. "Comparative Sensitivity Analysis of Some Fuzzy AHP Methods," Mathematics, MDPI, vol. 11(24), pages 1-41, December.
    20. Keon Chul Park & Dong-Hee Shin, 2017. "Security assessment framework for IoT service," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 64(1), pages 193-209, January.

    More about this item

    Keywords

    Fuzzy AHP; Fuzzy TOPSIS; job change decision; multi criteria decision making.;
    All these keywords.

    JEL classification:

    • J24 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Human Capital; Skills; Occupational Choice; Labor Productivity
    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory
    • C65 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Miscellaneous Mathematical Tools

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mir:mirbus:v:6:y:2016:i:3:p:60-75. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: M Kabir (email available below). General contact details of provider: https://edirc.repec.org/data/csmirus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.