IDEAS home Printed from https://ideas.repec.org/a/vrs/foeste/v17y2017i2p129-143n9.html
   My bibliography  Save this article

Capacity of Neural Networks and Discriminant Analysis in Classifying Potential Debtors

Author

Listed:
  • Piasecki Krzysztof

    (Poznań University of Economics and Business, Department of Investment and Real Estate, Niepodległości 10, 61-875Poznań, Poland)

  • Wójcicka-Wójtowicz Aleksandra

    (Poznań University of Economics and Business, Department of Operations Research, Niepodległości 10, 61-875Poznań, Poland)

Abstract

Identifying potential healthy and unsound customers is an important task. The reduction of loans granted to companies of questionable credibility can influence banks’ performance. A prior identification of factors that affect the condition of companies is a vital element. Among the most commonly used methods we can enumerate discriminant analysis (DA), scoring methods, neural networks (NN), etc. This paper investigates the use of different structure NN and DA in the process of the classification of banks’ potential clients. The results of those different methods are juxtaposed and their performance compared.

Suggested Citation

  • Piasecki Krzysztof & Wójcicka-Wójtowicz Aleksandra, 2017. "Capacity of Neural Networks and Discriminant Analysis in Classifying Potential Debtors," Folia Oeconomica Stetinensia, Sciendo, vol. 17(2), pages 129-143, December.
  • Handle: RePEc:vrs:foeste:v:17:y:2017:i:2:p:129-143:n:9
    DOI: 10.1515/foli-2017-0023
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/foli-2017-0023
    Download Restriction: no

    File URL: https://libkey.io/10.1515/foli-2017-0023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. du Jardin, Philippe, 2010. "Predicting bankruptcy using neural networks and other classification methods: the influence of variable selection techniques on model accuracy," MPRA Paper 44375, University Library of Munich, Germany.
    2. Sihem Khemakhem & Younes Boujelbene, 2015. "Credit Risk Prediction: A Comparative Study between Discriminant Analysis and the Neural Network Approach," Journal of Accounting and Management Information Systems, Faculty of Accounting and Management Information Systems, The Bucharest University of Economic Studies, vol. 14(1), pages 60-78, March.
    3. Anthony Brabazon & Peter Keenan, 2004. "A hybrid genetic model for the prediction of corporate failure," Computational Management Science, Springer, vol. 1(3), pages 293-310, October.
    4. Bart Baesens & Rudy Setiono & Christophe Mues & Jan Vanthienen, 2003. "Using Neural Network Rule Extraction and Decision Tables for Credit-Risk Evaluation," Management Science, INFORMS, vol. 49(3), pages 312-329, March.
    5. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    6. Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
    7. Adel KARAA & Aida KRICHENE, 2012. "Credit–Risk Assessment Using Support Vectors Machine and Multilayer Neural Network Models: A Comparative Study Case of a Tunisian Bank," Journal of Accounting and Management Information Systems, Faculty of Accounting and Management Information Systems, The Bucharest University of Economic Studies, vol. 11(4), pages 587-620, December.
    8. Gaudart, Jean & Giusiano, Bernard & Huiart, Laetitia, 2004. "Comparison of the performance of multi-layer perceptron and linear regression for epidemiological data," Computational Statistics & Data Analysis, Elsevier, vol. 44(4), pages 547-570, January.
    9. Ravi Kumar, P. & Ravi, V., 2007. "Bankruptcy prediction in banks and firms via statistical and intelligent techniques - A review," European Journal of Operational Research, Elsevier, vol. 180(1), pages 1-28, July.
    10. Angelini, Eliana & di Tollo, Giacomo & Roli, Andrea, 2008. "A neural network approach for credit risk evaluation," The Quarterly Review of Economics and Finance, Elsevier, vol. 48(4), pages 733-755, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. du Jardin, Philippe & Séverin, Eric, 2011. "Predicting corporate bankruptcy using a self-organizing map: An empirical study to improve the forecasting horizon of a financial failure model," MPRA Paper 44262, University Library of Munich, Germany.
    2. du Jardin, Philippe, 2015. "Bankruptcy prediction using terminal failure processes," European Journal of Operational Research, Elsevier, vol. 242(1), pages 286-303.
    3. Zeineb Affes & Rania Hentati-Kaffel, 2016. "Predicting US banks bankruptcy: logit versus Canonical Discriminant analysis," Post-Print halshs-01281948, HAL.
    4. Zeineb Affes & Rania Hentati-Kaffel, 2016. "Predicting US banks bankruptcy: logit versus Canonical Discriminant analysis," Documents de travail du Centre d'Economie de la Sorbonne 16016, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    5. Ilyes Abid & Rim Ayadi & Khaled Guesmi & Farid Mkaouar, 2022. "A new approach to deal with variable selection in neural networks: an application to bankruptcy prediction," Annals of Operations Research, Springer, vol. 313(2), pages 605-623, June.
    6. Marianna Lyra, 2010. "Heuristic Strategies in Finance – An Overview," Working Papers 045, COMISEF.
    7. Luca Sensini, 2016. "An Empirical Analysis of Financially Distressed Italian Companies," International Business Research, Canadian Center of Science and Education, vol. 9(10), pages 75-85, October.
    8. Sami Ben Jabeur & Nicolae Stef & Pedro Carmona, 2023. "Bankruptcy Prediction using the XGBoost Algorithm and Variable Importance Feature Engineering," Computational Economics, Springer;Society for Computational Economics, vol. 61(2), pages 715-741, February.
    9. Aleksandra Wójcicka, 2017. "Neural Networks in Credit Risk Classification of Companies in the Construction Sector," Econometric Research in Finance, SGH Warsaw School of Economics, Collegium of Economic Analysis, vol. 2(2), pages 63-77, December.
    10. Jabeur, Sami Ben & Gharib, Cheima & Mefteh-Wali, Salma & Arfi, Wissal Ben, 2021. "CatBoost model and artificial intelligence techniques for corporate failure prediction," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    11. Zhou, Fanyin & Fu, Lijun & Li, Zhiyong & Xu, Jiawei, 2022. "The recurrence of financial distress: A survival analysis," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1100-1115.
    12. Le, Hong Hanh & Viviani, Jean-Laurent, 2018. "Predicting bank failure: An improvement by implementing a machine-learning approach to classical financial ratios," Research in International Business and Finance, Elsevier, vol. 44(C), pages 16-25.
    13. Lin, Fengyi & Yeh, Ching Chiang & Lee, Meng Yuan, 2013. "A Hybrid Business Failure Prediction Model Using Locally Linear Embedding And Support Vector Machines," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(1), pages 82-97, March.
    14. Li, Hui & Sun, Jie, 2009. "Hybridizing principles of the Electre method with case-based reasoning for data mining: Electre-CBR-I and Electre-CBR-II," European Journal of Operational Research, Elsevier, vol. 197(1), pages 214-224, August.
    15. Serrano-Cinca, Carlos & Gutiérrez-Nieto, Begoña & Bernate-Valbuena, Martha, 2019. "The use of accounting anomalies indicators to predict business failure," European Management Journal, Elsevier, vol. 37(3), pages 353-375.
    16. M. Naresh Kumar & V. Sree Hari Rao, 2015. "A New Methodology for Estimating Internal Credit Risk and Bankruptcy Prediction under Basel II Regime," Computational Economics, Springer;Society for Computational Economics, vol. 46(1), pages 83-102, June.
    17. Carlos Serrano-Cinca & Yolanda Fuertes-Call鮠 & Bego uti鲲ez-Nieto & Beatriz Cuellar-Fernᮤez, 2014. "Path modelling to bankruptcy: causes and symptoms of the banking crisis," Applied Economics, Taylor & Francis Journals, vol. 46(31), pages 3798-3811, November.
    18. Mousavi, Mohammad M. & Ouenniche, Jamal & Xu, Bing, 2015. "Performance evaluation of bankruptcy prediction models: An orientation-free super-efficiency DEA-based framework," International Review of Financial Analysis, Elsevier, vol. 42(C), pages 64-75.
    19. Alina Mihaela Dima & Simona Vasilache, 2016. "Credit Risk modeling for Companies Default Prediction using Neural Networks," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(3), pages 127-143, September.
    20. Casado Yusta, Silvia & Nœ–ez Letamendía, Laura & Pacheco Bonrostro, Joaqu’n Antonio, 2018. "Predicting Corporate Failure: The GRASP-LOGIT Model || Predicci—n de la quiebra empresarial: el modelo GRASP-LOGIT," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 26(1), pages 294-314, Diciembre.

    More about this item

    Keywords

    credit risk; default; neural networks; discriminant analysis; financial indices;
    All these keywords.

    JEL classification:

    • G33 - Financial Economics - - Corporate Finance and Governance - - - Bankruptcy; Liquidation
    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis
    • C49 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Other

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:foeste:v:17:y:2017:i:2:p:129-143:n:9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.