Work Zone Scheduling Problem in the Urban Traffic Networks
Author
Abstract
Suggested Citation
DOI: 10.2478/ethemes-2023-0001
Download full text from publisher
References listed on IDEAS
- Anandalingam, G. & Apprey, Victor, 1991. "Multi-level programming and conflict resolution," European Journal of Operational Research, Elsevier, vol. 51(2), pages 233-247, March.
- Saeed Asadi Bagloee & Majid Sarvi, 2018. "An outer approximation method for the road network design problem," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-28, March.
- Ben-Ayed, Omar & Boyce, David E. & Blair, Charles E., 1988. "A general bilevel linear programming formulation of the network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 22(4), pages 311-318, August.
- LeBlanc, Larry J. & Boyce, David E., 1986. "A bilevel programming algorithm for exact solution of the network design problem with user-optimal flows," Transportation Research Part B: Methodological, Elsevier, vol. 20(3), pages 259-265, June.
- Byung Kim & Wonkyu Kim & Byung Song, 2008. "Sequencing and scheduling highway network expansion using a discrete network design model," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 42(3), pages 621-642, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Farahani, Reza Zanjirani & Miandoabchi, Elnaz & Szeto, W.Y. & Rashidi, Hannaneh, 2013. "A review of urban transportation network design problems," European Journal of Operational Research, Elsevier, vol. 229(2), pages 281-302.
- Anny B. Wang & W. Y. Szeto, 2020. "Bounding the Inefficiency of the Reliability-Based Continuous Network Design Problem Under Cost Recovery," Networks and Spatial Economics, Springer, vol. 20(2), pages 395-422, June.
- Zhong, Tao & Young, Rhonda, 2010. "Multiple Choice Knapsack Problem: Example of planning choice in transportation," Evaluation and Program Planning, Elsevier, vol. 33(2), pages 128-137, May.
- Ang, Sheng & Liu, Pei & Yang, Feng, 2020. "Intra-Organizational and inter-organizational resource allocation in two-stage network systems," Omega, Elsevier, vol. 91(C).
- Rocco S, Claudio M. & Ramirez-Marquez, José Emmanuel, 2009. "Deterministic network interdiction optimization via an evolutionary approach," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 568-576.
- Amirali Zarrinmehr & Mahmoud Saffarzadeh & Seyedehsan Seyedabrishami & Yu Marco Nie, 2016. "A path-based greedy algorithm for multi-objective transit routes design with elastic demand," Public Transport, Springer, vol. 8(2), pages 261-293, September.
- Ahlatcioglu, Mehmet & Tiryaki, Fatma, 2007. "Interactive fuzzy programming for decentralized two-level linear fractional programming (DTLLFP) problems," Omega, Elsevier, vol. 35(4), pages 432-450, August.
- Jen-Jia Lin & Chia-Jung Yu, 2013. "A bikeway network design model for urban areas," Transportation, Springer, vol. 40(1), pages 45-68, January.
- Giulio Cantarella & Antonino Vitetta, 2006. "The multi-criteria road network design problem in an urban area," Transportation, Springer, vol. 33(6), pages 567-588, November.
- Elnaz Miandoabchi & Reza Farahani & W. Szeto, 2012. "Bi-objective bimodal urban road network design using hybrid metaheuristics," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(4), pages 583-621, December.
- Hecheng Li, 2015. "A genetic algorithm using a finite search space for solving nonlinear/linear fractional bilevel programming problems," Annals of Operations Research, Springer, vol. 235(1), pages 543-558, December.
- Hosseininasab, Seyyed-Mohammadreza & Shetab-Boushehri, Seyyed-Nader, 2015. "Integration of selecting and scheduling urban road construction projects as a time-dependent discrete network design problem," European Journal of Operational Research, Elsevier, vol. 246(3), pages 762-771.
- Solanki, Rajendra S. & Gorti, Jyothi K. & Southworth, Frank, 1998. "Using decomposition in large-scale highway network design with a quasi-optimization heuristic," Transportation Research Part B: Methodological, Elsevier, vol. 32(2), pages 127-140, February.
- Kalinowski, Thomas & Matsypura, Dmytro & Savelsbergh, Martin W.P., 2015. "Incremental network design with maximum flows," European Journal of Operational Research, Elsevier, vol. 242(1), pages 51-62.
- Cohn, Amy & Davey, Melinda & Schkade, Lisa & Siegel, Amanda & Wong, Caris, 2008. "Network design and flow problems with cross-arc costs," European Journal of Operational Research, Elsevier, vol. 189(3), pages 890-901, September.
- T. Kim & Sunduck Suh, 1988. "Toward developing a national transportation planning model: A bilevel programming approach for Korea," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 22(1), pages 65-80, February.
- Sun, Yanshuo & Schonfeld, Paul, 2015. "Stochastic capacity expansion models for airport facilities," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 1-18.
- Lígia Conceição & Gonçalo Homem de Almeida Correia & José Pedro Tavares, 2020. "The Reversible Lane Network Design Problem (RL-NDP) for Smart Cities with Automated Traffic," Sustainability, MDPI, vol. 12(3), pages 1-22, February.
- Puchit Sariddichainunta & Masahiro Inuiguchi, 2017. "Global optimality test for maximin solution of bilevel linear programming with ambiguous lower-level objective function," Annals of Operations Research, Springer, vol. 256(2), pages 285-304, September.
- Hosseininasab, Seyyed-Mohammadreza & Shetab-Boushehri, Seyyed-Nader & Hejazi, Seyed Reza & Karimi, Hadi, 2018. "A multi-objective integrated model for selecting, scheduling, and budgeting road construction projects," European Journal of Operational Research, Elsevier, vol. 271(1), pages 262-277.
More about this item
Keywords
Work Zones; Traffic Assignment; Combinatorial Optimization; Incremental algorithm;All these keywords.
JEL classification:
- L91 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Transportation: General
- R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:ecothe:v:61:y:2023:i:1:p:1-18:n:5. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.