IDEAS home Printed from https://ideas.repec.org/a/vrs/ecobus/v32y2018i1p126-135n10.html
   My bibliography  Save this article

Stock Market Volatility Measure Using Non-Traditional Tool Case of Germany

Author

Listed:
  • Ahmed Naeem

    (COMSATS University, Islamabad, Pakistan)

  • Sarfraz Mudassira

    (COMSATS University, Islamabad, Pakistan)

Abstract

This study examines the stock market volatility of German bench-mark stock index DAX 30 using logarithmic extreme day return. German stock markets have been analyzed extensively in literature. We look into volatility issue from the standpoint of extreme-day changes. Our analysis indicates the non-normality of German stock market and higher probability of negative trading days. We measure the occurrences of extreme-day returns and their significance in measuring annual volatility. Our time series analysis indicates that the occurrences of extreme-days show a cyclical trend over the sample time period. Our comparison of negative and positive extreme-days indicates that negative extreme-days overweigh the positive extreme days. Standard deviation, as measure of volatility used traditionally, gives altered ranks of annual volatility to a considerable extent as compared to extreme-day returns. Lastly, existence of extreme day returns can be explained by past period occurrences, which show predictability.

Suggested Citation

  • Ahmed Naeem & Sarfraz Mudassira, 2018. "Stock Market Volatility Measure Using Non-Traditional Tool Case of Germany," Economics and Business, Sciendo, vol. 32(1), pages 126-135, July.
  • Handle: RePEc:vrs:ecobus:v:32:y:2018:i:1:p:126-135:n:10
    DOI: 10.2478/eb-2018-0010
    as

    Download full text from publisher

    File URL: https://doi.org/10.2478/eb-2018-0010
    Download Restriction: no

    File URL: https://libkey.io/10.2478/eb-2018-0010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Harvey, Campbell R. & Siddique, Akhtar, 1999. "Autoregressive Conditional Skewness," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(4), pages 465-487, December.
    2. Jondeau, Eric & Rockinger, Michael, 2003. "Testing for differences in the tails of stock-market returns," Journal of Empirical Finance, Elsevier, vol. 10(5), pages 559-581, December.
    3. Charles P. Jones & Mark D. Walker & Jack W. Wilson, 2004. "Analyzing Stock Market Volatility Using Extreme‐Day Measures," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 27(4), pages 585-601, December.
    4. Shlomo Benartzi & Richard H. Thaler, 1995. "Myopic Loss Aversion and the Equity Premium Puzzle," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(1), pages 73-92.
    5. Assaf, A., 2009. "Extreme observations and risk assessment in the equity markets of MENA region: Tail measures and Value-at-Risk," International Review of Financial Analysis, Elsevier, vol. 18(3), pages 109-116, June.
    6. David Burnie & Adri De Ridder, 2010. "Far tail or extreme day returns, mutual fund cash flows and investment behaviour," Applied Financial Economics, Taylor & Francis Journals, vol. 20(16), pages 1241-1256.
    7. Veld, Chris & Veld-Merkoulova, Yulia V., 2008. "The risk perceptions of individual investors," Journal of Economic Psychology, Elsevier, vol. 29(2), pages 226-252, April.
    8. Longin, Francois M, 1996. "The Asymptotic Distribution of Extreme Stock Market Returns," The Journal of Business, University of Chicago Press, vol. 69(3), pages 383-408, July.
    9. Lorne N. Switzer & Jun Wang & Seungho Lee, 2017. "Extreme risk and small investor behavior in developed markets," Journal of Asset Management, Palgrave Macmillan, vol. 18(6), pages 457-475, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kelvin Mutum, 2020. "Volatility Forecast Incorporating Investors’ Sentiment and its Application in Options Trading Strategies: A Behavioural Finance Approach at Nifty 50 Index," Vision, , vol. 24(2), pages 217-227, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eric Jondeau & Michael Rockinger, 2006. "Optimal Portfolio Allocation under Higher Moments," European Financial Management, European Financial Management Association, vol. 12(1), pages 29-55, January.
    2. Lorne N. Switzer & Jun Wang & Seungho Lee, 2017. "Extreme risk and small investor behavior in developed markets," Journal of Asset Management, Palgrave Macmillan, vol. 18(6), pages 457-475, October.
    3. Sofiane Aboura, 2014. "When the U.S. Stock Market Becomes Extreme?," Risks, MDPI, vol. 2(2), pages 1-15, May.
    4. Geluk, J.L. & De Vries, C.G., 2006. "Weighted sums of subexponential random variables and asymptotic dependence between returns on reinsurance equities," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 39-56, February.
    5. Chen, Zhimin & Ibragimov, Rustam, 2019. "One country, two systems? The heavy-tailedness of Chinese A- and H- share markets," Emerging Markets Review, Elsevier, vol. 38(C), pages 115-141.
    6. Alexander Eastman & Brian Lucey, 2008. "Skewness and asymmetry in futures returns and volumes," Applied Financial Economics, Taylor & Francis Journals, vol. 18(10), pages 777-800.
    7. Hussain, Saiful Izzuan & Li, Steven, 2015. "Modeling the distribution of extreme returns in the Chinese stock market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 34(C), pages 263-276.
    8. Kole, Erik & Koedijk, Kees & Verbeek, Marno, 2007. "Selecting copulas for risk management," Journal of Banking & Finance, Elsevier, vol. 31(8), pages 2405-2423, August.
    9. Candelon, Bertrand & Straetmans, Stefan, 2006. "Testing for multiple regimes in the tail behavior of emerging currency returns," Journal of International Money and Finance, Elsevier, vol. 25(7), pages 1187-1205, November.
    10. Al Rahahleh, Naseem & Bhatti, M. Ishaq, 2017. "Co-movement measure of information transmission on international equity markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 470(C), pages 119-131.
    11. Bertrand Candelon & Marc Joëts & Sessi Tokpavi, 2012. "Testing for crude oil markets globalization during extreme price movements," EconomiX Working Papers 2012-28, University of Paris Nanterre, EconomiX.
    12. DiTraglia, Francis J. & Gerlach, Jeffrey R., 2013. "Portfolio selection: An extreme value approach," Journal of Banking & Finance, Elsevier, vol. 37(2), pages 305-323.
    13. S. T. M. Straetmans & W. F. C. Verschoor & C. C. P. Wolff, 2008. "Extreme US stock market fluctuations in the wake of 9|11," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(1), pages 17-42.
    14. Rhee, S. Ghon & Wu, Feng, 2012. "Anything wrong with breaking a buck? An empirical evaluation of NASDAQ's $1 minimum bid price maintenance criterion," Journal of Financial Markets, Elsevier, vol. 15(2), pages 258-285.
    15. De Vries, C.G., 2005. "The simple economics of bank fragility," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 803-825, April.
    16. Herv¨¦ Ndoume Essingone & Mouhamadou Saliou Diallo, 2019. "Risk and Return: The Case of Securities Listed on the West African Economic and Monetary Union Regional Exchange of Securities (BRVM)," Applied Economics and Finance, Redfame publishing, vol. 6(1), pages 97-108, January.
    17. Joëts, Marc, 2014. "Energy price transmissions during extreme movements," Economic Modelling, Elsevier, vol. 40(C), pages 392-399.
    18. Chollete, Loran & Ning, Cathy, 2009. "The Dependence Structure of Macroeconomic Variables in the US," UiS Working Papers in Economics and Finance 2009/31, University of Stavanger.
    19. Tae-Hwy Lee & Yong Bao & Burak Saltoglu, 2006. "Evaluating predictive performance of value-at-risk models in emerging markets: a reality check," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(2), pages 101-128.
    20. Jalal, Amine & Rockinger, Michael, 2008. "Predicting tail-related risk measures: The consequences of using GARCH filters for non-GARCH data," Journal of Empirical Finance, Elsevier, vol. 15(5), pages 868-877, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:ecobus:v:32:y:2018:i:1:p:126-135:n:10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.