IDEAS home Printed from https://ideas.repec.org/a/vrs/ecobur/v7y2021i4p54-71n1.html
   My bibliography  Save this article

Does volatility mediate the impact of analyst recommendations on herding in Malaysian stock market?

Author

Listed:
  • Loang Ooi Kok

    (School of Management, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia)

  • Ahmad Zamri

    (School of Management, Universiti Sains Malaysia, 11800 Gelugor, Penang, Malaysia)

Abstract

This study examines the mediating role of volatility on the relationship between analyst recommendations and herding in the Malaysian stock market by using data from 2010 to 2020. Volatility is measured by realized volatility and the Parkinson estimator. The empirical evidence suggests that herding exists and realized volatility intervenes in the direct relationship between analyst recommendations and herding. The release of analyst recommendations causes realized volatility to fluctuate and investors are triggered by the volatility, which in turn follow the crowd to herd. Nonetheless, the Parkinson estimator is found to be insignificant, which infers that investors have anchor bias and rely on previous day stock prices to trade and herd. This paper provides an alternative explanation to the direct relationship and enhances the study of information-based herding. It contributes to academicians, practitioners, investors and policymakers to understand the herding of investors in responding to the arrival of new information.

Suggested Citation

  • Loang Ooi Kok & Ahmad Zamri, 2021. "Does volatility mediate the impact of analyst recommendations on herding in Malaysian stock market?," Economics and Business Review, Sciendo, vol. 7(4), pages 54-71, December.
  • Handle: RePEc:vrs:ecobur:v:7:y:2021:i:4:p:54-71:n:1
    DOI: 10.18559/ebr.2021.4.4
    as

    Download full text from publisher

    File URL: https://doi.org/10.18559/ebr.2021.4.4
    Download Restriction: no

    File URL: https://libkey.io/10.18559/ebr.2021.4.4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Koopman, Siem Jan & Jungbacker, Borus & Hol, Eugenie, 2005. "Forecasting daily variability of the S&P 100 stock index using historical, realised and implied volatility measurements," Journal of Empirical Finance, Elsevier, vol. 12(3), pages 445-475, June.
    2. Kuei-Yuan Wang & Yu-Sin Huang, 2020. "Effects of Transparency on Herding Behavior: Evidence from the Taiwanese Stock Market," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 55(8), pages 1821-1840, July.
    3. Narasimhan Jegadeesh & Woojin Kim, 2010. "Do Analysts Herd? An Analysis of Recommendations and Market Reactions," The Review of Financial Studies, Society for Financial Studies, vol. 23(2), pages 901-937, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raggi, Davide & Bordignon, Silvano, 2012. "Long memory and nonlinearities in realized volatility: A Markov switching approach," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3730-3742.
    2. Mende, Alexander, 2005. "09/11 on the USD/EUR Foreign Exchange Market," Hannover Economic Papers (HEP) dp-312, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    3. Alan Crane & Kevin Crotty, 2020. "How Skilled Are Security Analysts?," Journal of Finance, American Finance Association, vol. 75(3), pages 1629-1675, June.
    4. Lu Wang & Feng Ma & Guoshan Liu, 2020. "Forecasting stock volatility in the presence of extreme shocks: Short‐term and long‐term effects," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(5), pages 797-810, August.
    5. Jonathan J. Reeves & Xuan Xie, 2014. "Forecasting stock return volatility at the quarterly frequency: an evaluation of time series approaches," Applied Financial Economics, Taylor & Francis Journals, vol. 24(5), pages 347-356, March.
    6. David E. Allen & Michael McAleer & Marcel Scharth, 2009. "Realized Volatility Risk," CARF F-Series CARF-F-197, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo, revised Jan 2010.
    7. Heejoon Han & Myung D. Park, 2013. "Comparison of Realized Measure and Implied Volatility in Forecasting Volatility," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(6), pages 522-533, September.
    8. Xu, Yanyan & Huang, Dengshi & Ma, Feng & Qiao, Gaoxiu, 2019. "Liquidity and realized range-based volatility forecasting: Evidence from China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1102-1113.
    9. David E. Allen & Michael McAleer & Marcel Scharth, 2014. "Asymmetric Realized Volatility Risk," JRFM, MDPI, vol. 7(2), pages 1-30, June.
    10. Roxana Chiriac & Valeri Voev, 2011. "Modelling and forecasting multivariate realized volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(6), pages 922-947, September.
    11. Reus, Lorenzo & Carrasco, José A. & Pincheira, Pablo, 2020. "Do it with a smile: Forecasting volatility with currency options," Finance Research Letters, Elsevier, vol. 34(C).
    12. Sattarhoff, Cristina & Lux, Thomas, 2023. "Forecasting the variability of stock index returns with the multifractal random walk model for realized volatilities," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1678-1697.
    13. Dimitrios Kartsonakis Mademlis & Nikolaos Dritsakis, 2021. "Volatility Forecasting using Hybrid GARCH Neural Network Models: The Case of the Italian Stock Market," International Journal of Economics and Financial Issues, Econjournals, vol. 11(1), pages 49-60.
    14. Stavros Degiannakis, George Filis, and Renatas Kizys, 2014. "The Effects of Oil Price Shocks on Stock Market Volatility: Evidence from European Data," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    15. He, Xue-Zhong & Li, Kai & Santi, Caterina & Shi, Lei, 2022. "Social interaction, volatility clustering, and momentum," Journal of Economic Behavior & Organization, Elsevier, vol. 203(C), pages 125-149.
    16. Caporale, Guglielmo Maria & Gil-Alana, Luis & Plastun, Alex, 2018. "Is market fear persistent? A long-memory analysis," Finance Research Letters, Elsevier, vol. 27(C), pages 140-147.
    17. Antonakakis, Nikolaos & Chatziantoniou, Ioannis & Filis, George, 2017. "Oil shocks and stock markets: Dynamic connectedness under the prism of recent geopolitical and economic unrest," International Review of Financial Analysis, Elsevier, vol. 50(C), pages 1-26.
    18. Zhu, Qinwen & Diao, Xundi & Wu, Chongfeng, 2023. "Volatility forecast with the regularity modifications," Finance Research Letters, Elsevier, vol. 58(PA).
    19. Bastien Baldacci, 2020. "High-frequency dynamics of the implied volatility surface," Papers 2012.10875, arXiv.org.
    20. Mohammad Al-Shboul & Aktham Maghyereh, 2023. "Did real economic uncertainty drive risk connectedness in the oil–stock nexus during the COVID-19 outbreak? A partial wavelet coherence analysis," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 12(1), pages 1-23, December.

    More about this item

    Keywords

    behavioural finance; herding; analyst recommendation; volatility; stock market;
    All these keywords.

    JEL classification:

    • D53 - Microeconomics - - General Equilibrium and Disequilibrium - - - Financial Markets
    • E70 - Macroeconomics and Monetary Economics - - Macro-Based Behavioral Economics - - - General
    • G40 - Financial Economics - - Behavioral Finance - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:ecobur:v:7:y:2021:i:4:p:54-71:n:1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.