IDEAS home Printed from https://ideas.repec.org/a/vrs/eaiada/v25y2021i3p72-84n1.html
   My bibliography  Save this article

The Absence of Arbitrage on the Complete Black-Scholes-Merton Regime-Switching Lévy Market

Author

Listed:
  • Sulima Anna

    (Wroclaw University of Economics and Business, Wroclaw, Poland, Department of Econometrics and Operational Research, Faculty of Economics and Finance)

Abstract

The main aim of the paper was to prove that the complete Black-Scholes-Merton regime-switching Lévy market is characterized by an absence of arbitrage. In the considered model, the prices of financial assets are described by the Lévy process in which the coefficients depend on the states of the Markov chain. Such a market is incomplete; in order to complete this market, jump financial instruments and power-jump assets were added. Then, an equivalent martingale measure was indicated and the conditions were determined so that the above model is characterized by the absence of arbitrage. Arbitrage is a trade that profits by exploiting the price differences of identical or similar financial instruments in different markets or in different forms. Thus arbitrage can be understood as risk-free profit for the trader.

Suggested Citation

  • Sulima Anna, 2021. "The Absence of Arbitrage on the Complete Black-Scholes-Merton Regime-Switching Lévy Market," Econometrics. Advances in Applied Data Analysis, Sciendo, vol. 25(3), pages 72-84, September.
  • Handle: RePEc:vrs:eaiada:v:25:y:2021:i:3:p:72-84:n:1
    DOI: 10.15611/eada.2021.3.04
    as

    Download full text from publisher

    File URL: https://doi.org/10.15611/eada.2021.3.04
    Download Restriction: no

    File URL: https://libkey.io/10.15611/eada.2021.3.04?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Naik, Vasanttilak, 1993. "Option Valuation and Hedging Strategies with Jumps in the Volatility of Asset Returns," Journal of Finance, American Finance Association, vol. 48(5), pages 1969-1984, December.
    2. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    3. José Manuel Corcuera & David Nualart & Wim Schoutens, 2005. "Completion of a Lévy market by power-jump assets," Finance and Stochastics, Springer, vol. 9(1), pages 109-127, January.
    4. Harrison, J. Michael & Pliska, Stanley R., 1981. "Martingales and stochastic integrals in the theory of continuous trading," Stochastic Processes and their Applications, Elsevier, vol. 11(3), pages 215-260, August.
    5. Philippe Artzner & David Heath, 1995. "Approximate Completeness With Multiple Martingale Measures," Mathematical Finance, Wiley Blackwell, vol. 5(1), pages 1-11, January.
    6. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    7. Zbigniew Palmowski & Łukasz Stettner & Anna Sulima, 2019. "Optimal Portfolio Selection in an Itô–Markov Additive Market," Risks, MDPI, vol. 7(1), pages 1-32, March.
    8. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    9. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carol Alexander & Leonardo M. Nogueira, 2006. "Hedging Options with Scale-Invariant Models," ICMA Centre Discussion Papers in Finance icma-dp2006-03, Henley Business School, University of Reading.
    2. Alexander, Carol & Nogueira, Leonardo M., 2007. "Model-free hedge ratios and scale-invariant models," Journal of Banking & Finance, Elsevier, vol. 31(6), pages 1839-1861, June.
    3. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    4. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    5. Zhu, Ke & Ling, Shiqing, 2015. "Model-based pricing for financial derivatives," Journal of Econometrics, Elsevier, vol. 187(2), pages 447-457.
    6. Geman, Hélyette, 2005. "From measure changes to time changes in asset pricing," Journal of Banking & Finance, Elsevier, vol. 29(11), pages 2701-2722, November.
    7. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    8. El-Khatib, Youssef & Goutte, Stephane & Makumbe, Zororo S. & Vives, Josep, 2023. "A hybrid stochastic volatility model in a Lévy market," International Review of Economics & Finance, Elsevier, vol. 85(C), pages 220-235.
    9. David S. Bates, 1995. "Testing Option Pricing Models," NBER Working Papers 5129, National Bureau of Economic Research, Inc.
    10. repec:dau:papers:123456789/5374 is not listed on IDEAS
    11. Siu, Tak Kuen, 2008. "A game theoretic approach to option valuation under Markovian regime-switching models," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 1146-1158, June.
    12. Mondher Bellalah, 2009. "Derivatives, Risk Management & Value," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 7175, December.
    13. Carl Chiarella & Xue-Zhong He & Christina Sklibosios Nikitopoulos, 2015. "Derivative Security Pricing," Dynamic Modeling and Econometrics in Economics and Finance, Springer, edition 127, number 978-3-662-45906-5, May.
    14. Munk, Claus, 2015. "Financial Asset Pricing Theory," OUP Catalogue, Oxford University Press, number 9780198716457.
    15. Yuan Hu & W. Brent Lindquist & Svetlozar T. Rachev & Frank J. Fabozzi, 2023. "Option pricing using a skew random walk pricing tree," Papers 2303.17014, arXiv.org.
    16. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    17. Peter P. Carr & Zura Kakushadze, 2017. "FX options in target zones," Quantitative Finance, Taylor & Francis Journals, vol. 17(10), pages 1477-1486, October.
    18. Carol Alexandra & Leonardo M. Nogueira, 2005. "Optimal Hedging and Scale Inavriance: A Taxonomy of Option Pricing Models," ICMA Centre Discussion Papers in Finance icma-dp2005-10, Henley Business School, University of Reading, revised Nov 2005.
    19. René Garcia & Richard Luger & Eric Renault, 2000. "Asymmetric Smiles, Leverage Effects and Structural Parameters," Working Papers 2000-57, Center for Research in Economics and Statistics.
    20. Carvalho, Augusto & Guimaraes, Bernardo, 2018. "State-controlled companies and political risk: Evidence from the 2014 Brazilian election," Journal of Public Economics, Elsevier, vol. 159(C), pages 66-78.
    21. Yeap, Claudia & Kwok, Simon S. & Choy, S. T. Boris, 2016. "A Flexible Generalised Hyperbolic Option Pricing Model and its Special Cases," Working Papers 2016-14, University of Sydney, School of Economics.

    More about this item

    Keywords

    Lévy process; regime-switching; arbitrage; martingale measure;
    All these keywords.

    JEL classification:

    • D53 - Microeconomics - - General Equilibrium and Disequilibrium - - - Financial Markets
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:eaiada:v:25:y:2021:i:3:p:72-84:n:1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.