IDEAS home Printed from https://ideas.repec.org/a/vrs/demode/v10y2022i1p191-206n5.html
   My bibliography  Save this article

Predictability of cryptocurrency returns: evidence from robust tests

Author

Listed:
  • He Siyun

    (Department of Economics, University of Michigan, Ann Arbor, MI 48109, USA)

  • Ibragimov Rustam

    (Imperial College Business School, South Kensington Campus, London SW20 8TE, United Kingdom)

Abstract

The paper provides a comparative empirical study of predictability of cryptocurrency returns and prices using econometrically justified robust inference methods. We present robust econometric analysis of predictive regressions incorporating factors, which were suggested by Liu, Y., & Tsyvinski, A. (2018). Risks and returns of cryptocurrency. NBER working paper no. 24877; Liu, Y., & Tsyvinski, A. (2021). Risks and returns of cryptocurrency. The Review of Financial Studies, 34(6), 2689–2727, as useful predictors for cryptocurrency returns, including cryptocurrency momentum, stock market factors, acceptance of Bitcoin, and Google trends measure of investors’ attention. Due to inherent heterogeneity and dependence properties of returns and other time series in financial and crypto markets, we provide the analysis of the predictive regressions using both heteroskedasticity and autocorrelation consistent (HAC) standard-errors and also the recently developed t t -statistic robust inference approaches, Ibragimov, R., & Müller, U. K. (2010). t-statistic based correlation and heterogeneity robust inference. Journal of Business and Economic Statistics, 28, 453–468; Ibragimov, R., & Müller, U. K. (2016). Inference with few heterogeneous clusters. Review of Economics and Statistics, 98, 83–96. We provide comparisons of robust predictive regression estimates between different cryptocurrencies and their corresponding risk and factor exposures. In general, the number of significant factors decreases as we use more robust t-tests, and the t-statistic robust inference approaches appear to perform better than the t-tests based on HAC standard errors in terms of pointing out interpretable economic conclusions. The results in this paper emphasize the importance of the use of robust inference approaches in the analysis of economic and financial data affected by the problems of heterogeneity and dependence.

Suggested Citation

  • He Siyun & Ibragimov Rustam, 2022. "Predictability of cryptocurrency returns: evidence from robust tests," Dependence Modeling, De Gruyter, vol. 10(1), pages 191-206, January.
  • Handle: RePEc:vrs:demode:v:10:y:2022:i:1:p:191-206:n:5
    DOI: 10.1515/demo-2022-0111
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/demo-2022-0111
    Download Restriction: no

    File URL: https://libkey.io/10.1515/demo-2022-0111?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    2. Baur, Dirk G. & Dimpfl, Thomas & Kuck, Konstantin, 2018. "Bitcoin, gold and the US dollar – A replication and extension," Finance Research Letters, Elsevier, vol. 25(C), pages 103-110.
    3. C. Alexander & M. Dakos, 2020. "A critical investigation of cryptocurrency data and analysis," Quantitative Finance, Taylor & Francis Journals, vol. 20(2), pages 173-188, February.
    4. Jamal Bouoiyour & Refk Selmi, 2016. "Bitcoin: a beginning of a new phase?," Economics Bulletin, AccessEcon, vol. 36(3), pages 1430-1440.
    5. Borri, Nicola, 2019. "Conditional tail-risk in cryptocurrency markets," Journal of Empirical Finance, Elsevier, vol. 50(C), pages 1-19.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Esparcia, Carlos & López, Raquel, 2024. "Performance of crypto-Forex portfolios based on intraday data," Research in International Business and Finance, Elsevier, vol. 69(C).
    2. Fakhfekh, Mohamed & Jeribi, Ahmed, 2020. "Volatility dynamics of crypto-currencies’ returns: Evidence from asymmetric and long memory GARCH models," Research in International Business and Finance, Elsevier, vol. 51(C).
    3. Costantini, Mauro & Maaitah, Ahmad & Mishra, Tapas & Sousa, Ricardo M., 2023. "Bitcoin market networks and cyberattacks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    4. Klaus Grobys, 2021. "When the blockchain does not block: on hackings and uncertainty in the cryptocurrency market," Quantitative Finance, Taylor & Francis Journals, vol. 21(8), pages 1267-1279, August.
    5. Caporale, Guglielmo Maria & Kang, Woo-Young & Spagnolo, Fabio & Spagnolo, Nicola, 2021. "Cyber-attacks, spillovers and contagion in the cryptocurrency markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 74(C).
    6. Tang, Tao & Wang, Yanchen, 2022. "Liquidity Shocks, Price Volatilities, and Risk-managed Strategy: Evidence from Bitcoin and Beyond," Journal of Multinational Financial Management, Elsevier, vol. 64(C).
    7. Qiu, Yue & Wang, Yifan & Xie, Tian, 2021. "Forecasting Bitcoin realized volatility by measuring the spillover effect among cryptocurrencies," Economics Letters, Elsevier, vol. 208(C).
    8. Parthajit Kayal & G. Balasubramanian, 2021. "Excess Volatility in Bitcoin: Extreme Value Volatility Estimation," IIM Kozhikode Society & Management Review, , vol. 10(2), pages 222-231, July.
    9. Fan Fang & Carmine Ventre & Michail Basios & Leslie Kanthan & David Martinez-Rego & Fan Wu & Lingbo Li, 2022. "Cryptocurrency trading: a comprehensive survey," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-59, December.
    10. Panagiotidis, Theodore & Stengos, Thanasis & Vravosinos, Orestis, 2019. "The effects of markets, uncertainty and search intensity on bitcoin returns," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 220-242.
    11. Donglian Ma & Pengxiang Zhai, 2021. "The Accuracy of the Tick Rule in the Bitcoin Market," SAGE Open, , vol. 11(2), pages 21582440211, May.
    12. Tetsuya Takaishi & Takanori Adachi, 2020. "Market Efficiency, Liquidity, and Multifractality of Bitcoin: A Dynamic Study," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 27(1), pages 145-154, March.
    13. Bampinas, Georgios & Panagiotidis, Theodore, 2024. "How would the war and the pandemic affect the stock and cryptocurrency cross-market linkages?," Research in International Business and Finance, Elsevier, vol. 70(PA).
    14. Constandina Koki & Stefanos Leonardos & Georgios Piliouras, 2020. "Do Cryptocurrency Prices Camouflage Latent Economic Effects? A Bayesian Hidden Markov Approach," Future Internet, MDPI, vol. 12(3), pages 1-19, March.
    15. Pele, Daniel Traian & Wesselhöfft, Niels & Härdle, Wolfgang Karl & Kolossiatis, Michalis & Yatracos, Yannis, 2019. "Phenotypic convergence of cryptocurrencies," IRTG 1792 Discussion Papers 2019-018, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    16. Fang, Libing & Bouri, Elie & Gupta, Rangan & Roubaud, David, 2019. "Does global economic uncertainty matter for the volatility and hedging effectiveness of Bitcoin?," International Review of Financial Analysis, Elsevier, vol. 61(C), pages 29-36.
    17. Haffar, Adlane & Le Fur, Eric, 2021. "Structural vector error correction modelling of Bitcoin price," The Quarterly Review of Economics and Finance, Elsevier, vol. 80(C), pages 170-178.
    18. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
    19. Jiménez, Inés & Mora-Valencia, Andrés & Perote, Javier, 2022. "Semi-nonparametric risk assessment with cryptocurrencies," Research in International Business and Finance, Elsevier, vol. 59(C).
    20. Fieberg, Christian & Günther, Steffen & Poddig, Thorsten & Zaremba, Adam, 2024. "Non-standard errors in the cryptocurrency world," International Review of Financial Analysis, Elsevier, vol. 92(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:demode:v:10:y:2022:i:1:p:191-206:n:5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.