IDEAS home Printed from https://ideas.repec.org/a/uwp/landec/v85y2009i1p162-185.html
   My bibliography  Save this article

Adjacency Externalities and Forest Fire Prevention

Author

Listed:
  • Christian S. L. Crowley
  • Arun S. Malik
  • Gregory S. Amacher
  • Robert G. Haight

Abstract

This paper models landowner behavior on timberland subject to damage by fire. We examine how management decisions by adjacent landowners yield outcomes that diverge from the social optimum, and consider how this divergence depends on landowner preferences and information. We conduct a numerical simulation in which landowners interact through the effects of their fire prevention activities on a common risk of fire. The results reveal significant social inefficiencies related to externalities associated with private fuel treatment decisions. We consider a policy for aligning social and private decisions by requiring landowners to share the government’s cost of fire suppression.

Suggested Citation

  • Christian S. L. Crowley & Arun S. Malik & Gregory S. Amacher & Robert G. Haight, 2009. "Adjacency Externalities and Forest Fire Prevention," Land Economics, University of Wisconsin Press, vol. 85(1), pages 162-185.
  • Handle: RePEc:uwp:landec:v:85:y:2009:i:1:p:162-185
    as

    Download full text from publisher

    File URL: http://le.uwpress.org/cgi/reprint/85/1/162
    Download Restriction: A subscripton is required to access pdf files. Pay per article is available.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hartman, Richard, 1976. "The Harvesting Decision When a Standing Forest Has Value," Economic Inquiry, Western Economic Association International, vol. 14(1), pages 52-58, March.
    2. Insley, Margaret & Lei, Manle, 2007. "Hedges and Trees: Incorporating Fire Risk into Optimal Decisions in Forestry Using a No-Arbitrage Approach," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 32(3), pages 1-23, December.
    3. Englin, Jeffrey E. & Boxall, Peter C. & Hauer, Grant, 2000. "An Empirical Examination Of Optimal Rotations In A Multiple-Use Forest In The Presence Of Fire Risk," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 25(1), pages 1-14, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christian Langpap & JunJie Wu, 2021. "Preemptive Incentives and Liability Rules for Wildfire Risk Management," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(5), pages 1783-1801, October.
    2. Husmiati Yusuf & Fahmi Ilman Fahrudin & Adi Fahrudin & Abu Huraerah & Kiyah George Albert Wanda, 2022. "The model of community empowerment in fire forest disaster prevention in Indonesia," Technium Sustainability, Technium Science, vol. 2(1), pages 38-45, January.
    3. Al Abri, Ibtisam H. & Grogan, Kelly A. & Daigneault, Adam, 2017. "Optimal Forest Fire Management with Applications to Florida," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258568, Agricultural and Applied Economics Association.
    4. Stefan Borsky & Hannah Hennighausen, 2022. "Public Flood Risk Mitigation and the Homeowner’s Insurance Demand Response," Land Economics, University of Wisconsin Press, vol. 98(4), pages 537-559.
    5. Busby, Gwenlyn & Amacher, Gregory S. & Haight, Robert G., 2013. "The social costs of homeowner decisions in fire-prone communities: Information, insurance, and amenities," Ecological Economics, Elsevier, vol. 92(C), pages 104-113.
    6. Prante, Tyler & Little, Joseph M. & Jones, Michael L. & McKee, Michael & Berrens, Robert P., 2011. "Inducing private wildfire risk mitigation: Experimental investigation of measures on adjacent public lands," Journal of Forest Economics, Elsevier, vol. 17(4), pages 415-431.
    7. Lewandrowski, Jan & Kim, C.S. & Aillery, Marcel, 2014. "Carbon sequestration through afforestation under uncertainty," Forest Policy and Economics, Elsevier, vol. 38(C), pages 90-96.
    8. Aric Shafran, 2016. "Urban Sprawl and the Public Provision of Fire Suppression," Working Papers 1603, California Polytechnic State University, Department of Economics.
    9. Rossi, David & Kuusela, Olli-Pekka, 2023. "Carbon and Timber Management in Western Oregon under Tax-Financed Investments in Wildfire Risk Mitigation," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 48(2), May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Couture, Stéphane & Reynaud, Arnaud, 2011. "Forest management under fire risk when forest carbon sequestration has value," Ecological Economics, Elsevier, vol. 70(11), pages 2002-2011, September.
    2. Roosen, Jutta & Hennessy, David A., 2001. "An Equilibrium Analysis Of Antibiotics Use And Replanting Decisions In Apple Production," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 26(2), pages 1-15, December.
    3. Xu, Ying & Amacher, Gregory S. & Sullivan, Jay, 2016. "Optimal forest management with sequential disturbances," Journal of Forest Economics, Elsevier, vol. 24(C), pages 106-122.
    4. Marielle Brunette & Stephane Couture, 2018. "Risk management activities of a non-industrial privateforest owner with a bivariate utility function," Review of Agricultural, Food and Environmental Studies, INRA Department of Economics, vol. 99(3-4), pages 281-302.
    5. Brunette, Marielle & Couture, Stéphane & Langlais, Eric, 2007. "Hedging Strategies in Forest Management," MPRA Paper 5228, University Library of Munich, Germany.
    6. Amacher, Gregory S. & Malik, Arun S. & Haight, Robert G., 2005. "Nonindustrial private landowners, fires, and the wildland-urban interface," Forest Policy and Economics, Elsevier, vol. 7(5), pages 796-805, August.
    7. Gregory S. Amacher & Arun S. Malik & Robert G. Haight, 2005. "Not Getting Burned: The Importance of Fire Prevention in Forest Management," Land Economics, University of Wisconsin Press, vol. 81(2).
    8. Macpherson, Morag F. & Kleczkowski, Adam & Healey, John R. & Hanley, Nick, 2017. "Payment for multiple forest benefits alters the effect of tree disease on optimal forest rotation length," Ecological Economics, Elsevier, vol. 134(C), pages 82-94.
    9. Ken Stollery, 2001. "Climate Change and Optimal Rotation in a Flammable Forest," Working Papers 01001, University of Waterloo, Department of Economics, revised Jan 2001.
    10. Morag F. Macpherson & Adam Kleczkowski & John Healey & Nick Hanley, 2015. "When to harvest? The effect of disease on optimal forest rotation," Discussion Papers in Environment and Development Economics 2015-19, University of St. Andrews, School of Geography and Sustainable Development.
    11. Newman, D.H., 2002. "Forestry's golden rule and the development of the optimal forest rotation literature," Journal of Forest Economics, Elsevier, vol. 8(1), pages 5-27.
    12. Creamer, Selmin F. & Genz, Alan & Blatner, Keith A., 2012. "The Effect of Fire Risk on the Critical Harvesting Times for Pacific Northwest Douglas-Fir When Carbon Price Is Stochastic," Agricultural and Resource Economics Review, Northeastern Agricultural and Resource Economics Association, vol. 41(3), pages 1-14, December.
    13. Luis Diaz-Balteiro & David Martell & Carlos Romero & Andrés Weintraub, 2014. "The optimal rotation of a flammable forest stand when both carbon sequestration and timber are valued: a multi-criteria approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 375-387, June.
    14. Morag F. Macpherson & Adam Kleczkowski & John R. Healey & Nick Hanley, 2018. "The Effects of Disease on Optimal Forest Rotation: A Generalisable Analytical Framework," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 70(3), pages 565-588, July.
    15. Stainback, G. Andrew & Alavalapati, Janaki R.R., 2002. "Fire Risk and the Economics of Sequestering Carbon in Forests," 2002 Annual meeting, July 28-31, Long Beach, CA 19629, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    16. Hu, Lijiao & Stainback, George & Li, Xiaoshu, 2016. "Economic Analysis of Carbon Sequestration under Risks in Forest management," 2016 Annual Meeting, February 6-9, 2016, San Antonio, Texas 229983, Southern Agricultural Economics Association.
    17. Schou, Erik & Jacobsen, Jette Bredahl & Kristensen, Kristian Løkke, 2012. "An economic evaluation of strategies for transforming even-aged into near-natural forestry in a conifer-dominated forest in Denmark," Forest Policy and Economics, Elsevier, vol. 20(C), pages 89-98.
    18. Stenger, Anne & Harou, Patrice & Navrud, Ståle, 2009. "Valuing environmental goods and services derived from the forests," Journal of Forest Economics, Elsevier, vol. 15(1-2), pages 1-14, January.
    19. Chen, Shan & Insley, Margaret, 2012. "Regime switching in stochastic models of commodity prices: An application to an optimal tree harvesting problem," Journal of Economic Dynamics and Control, Elsevier, vol. 36(2), pages 201-219.
    20. Kooten, G. Cornelis Van, 2022. "The Impact of Carbon on Optimal Forest Rotation Ages: An Application to Coastal Forests in British Columbia," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322612, Agricultural and Applied Economics Association.

    More about this item

    JEL classification:

    • Q23 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Forestry
    • Q28 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Government Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uwp:landec:v:85:y:2009:i:1:p:162-185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://le.uwpress.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.