IDEAS home Printed from https://ideas.repec.org/a/uwp/landec/v81y2005i4p546-556.html
   My bibliography  Save this article

Technological Change for Sulfur Dioxide Scrubbers under Market-Based Regulation

Author

Listed:
  • Ian Lange
  • Allen Bellas

Abstract

The 1990 Clean Air ActAmendments (CAAA) introduced tradable permits for controlling sulfur dioxide (SO2) emissions from coal-burning power plants and forced scrubbers to compete with other SO2 abatement options. While the flexibility of permits reduced overall compliance costs, a secondary benefit would exist if there were resulting advances in scrubber technology. A hedonic model is used to estimate the effect of changing regulatory regimes on scrubber costs. While scrubbers installed under the 1990 CAAA are cheaper to purchase and operate than older scrubbers, these cost reductions seem to be a one-time drop rather than a continual decline.

Suggested Citation

  • Ian Lange & Allen Bellas, 2005. "Technological Change for Sulfur Dioxide Scrubbers under Market-Based Regulation," Land Economics, University of Wisconsin Press, vol. 81(4).
  • Handle: RePEc:uwp:landec:v:81:y:2005:i:4:p546-556
    as

    Download full text from publisher

    File URL: http://le.uwpress.org/cgi/reprint/81/4/546
    Download Restriction: A subscripton is required to access pdf files. Pay per article is available.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dallas Burtraw, 1996. "The So2 Emissions Trading Program: Cost Savings Without Allowance Trades," Contemporary Economic Policy, Western Economic Association International, vol. 14(2), pages 79-94, April.
    2. Curtis Carlson & Dallas Burtraw & Maureen Cropper & Karen L. Palmer, 2000. "Sulfur Dioxide Control by Electric Utilities: What Are the Gains from Trade?," Journal of Political Economy, University of Chicago Press, vol. 108(6), pages 1292-1326, December.
    3. David Popp, 2003. "Pollution control innovations and the Clean Air Act of 1990," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 22(4), pages 641-660.
    4. Jung, Chulho & Krutilla, Kerry & Boyd, Roy, 1996. "Incentives for Advanced Pollution Abatement Technology at the Industry Level: An Evaluation of Policy Alternatives," Journal of Environmental Economics and Management, Elsevier, vol. 30(1), pages 95-111, January.
    5. Ellerman,A. Denny & Joskow,Paul L. & Schmalensee,Richard & Montero,Juan-Pablo & Bailey,Elizabeth M., 2005. "Markets for Clean Air," Cambridge Books, Cambridge University Press, number 9780521023894, September.
      • Ellerman,A. Denny & Joskow,Paul L. & Schmalensee,Richard & Montero,Juan-Pablo & Bailey,Elizabeth M., 2000. "Markets for Clean Air," Cambridge Books, Cambridge University Press, number 9780521660839.
    6. Nathaniel O. Keohane, 2003. "What Did the Market Buy? Cost Savings Under the U. S. Tradeable Permits Program for Sulfur Dioxide," Yale School of Management Working Papers ysm437, Yale School of Management.
    7. Milliman, Scott R. & Prince, Raymond, 1989. "Firm incentives to promote technological change in pollution control," Journal of Environmental Economics and Management, Elsevier, vol. 17(3), pages 247-265, November.
    8. Malueg, David A., 1989. "Emission credit trading and the incentive to adopt new pollution abatement technology," Journal of Environmental Economics and Management, Elsevier, vol. 16(1), pages 52-57, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Allen Bellas & Ian Lange, 2010. "Technological progress in particulate removal equipment at U.S. coal burning power plants," Journal of Regulatory Economics, Springer, vol. 38(2), pages 180-192, October.
    2. Allen Bellas & Duane Finney & Ian Lange, 2013. "Technological Advance in Cooling Systems at U.S. Power Plants," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
    3. Stowe, Robert C & Stavins, Robert Norman & Chan, Gabriel Angelo & Sweeney, Richard Leonard, 2012. "The SO2 Allowance Trading System and the Clean Air Act Amendments of 1990: Reflections on Twenty Years of Policy Innovation," Scholarly Articles 8160721, Harvard Kennedy School of Government.
    4. Santosh Kumar Sahu & K. Narayanan, 2016. "Environmental Certification and Technical Efficiency: A Study of Manufacturing Firms in India," Journal of Industry, Competition and Trade, Springer, vol. 16(2), pages 191-207, June.
    5. Kopyrina, Olga & Wu, Kai & Ying, Zhanyu, 2023. "Greening through central inspection: The role of legitimacy pressure and risk-taking," Pacific-Basin Finance Journal, Elsevier, vol. 77(C).
    6. Ren, Shenggang & Hu, Yucai & Zheng, Jingjing & Wang, Yangjie, 2020. "Emissions trading and firm innovation: Evidence from a natural experiment in China," Technological Forecasting and Social Change, Elsevier, vol. 155(C).
    7. Grischa Perino, 2010. "Price Discrimination Based on Downstream Regulation: Evidence from the Market for SO2 Scrubbers," Working Paper series, University of East Anglia, Centre for Competition Policy (CCP) 2010-09, Centre for Competition Policy, University of East Anglia, Norwich, UK..
    8. Raphael Calel & Antoine Dechezleprêtre, 2016. "Environmental Policy and Directed Technological Change: Evidence from the European Carbon Market," The Review of Economics and Statistics, MIT Press, vol. 98(1), pages 173-191, March.
    9. Rakesh Kumar Jain & Surender Kumar, 2018. "Shadow price of CO2 emissions in Indian thermal power sector," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 20(4), pages 879-902, October.
    10. David Grover, 2012. "The �advancedness� of knowledge in pollutionsaving technological change with a qualitative application to SO2 cap and trade," GRI Working Papers 100, Grantham Research Institute on Climate Change and the Environment.
    11. Popp, David & Newell, Richard G. & Jaffe, Adam B., 2010. "Energy, the Environment, and Technological Change," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 873-937, Elsevier.
    12. Kumar, Surender & Managi, Shunsuke, 2010. "Sulfur dioxide allowances: Trading and technological progress," Ecological Economics, Elsevier, vol. 69(3), pages 623-631, January.
    13. Chen Feng & Beibei Shi & Rong Kang, 2017. "Does Environmental Policy Reduce Enterprise Innovation?—Evidence from China," Sustainability, MDPI, vol. 9(6), pages 1-24, May.
    14. Grover, David, 2013. "The ‘advancedness’ of knowledge in pollution-saving technological change with a qualitative application to SO2 cap and trade," Ecological Economics, Elsevier, vol. 89(C), pages 123-134.
    15. Bruce L. Benson, 2015. "Regulation As a Barrier to Market Provision and to Innovation: The Case of Toll Roads and Steam Carriages in England," Journal of Private Enterprise, The Association of Private Enterprise Education, vol. 30(Spring 20), pages 61-87.
    16. Chan, H. Ron & Chupp, B. Andrew & Cropper, Maureen L. & Muller, Nicholas Z., 2018. "The impact of trading on the costs and benefits of the Acid Rain Program," Journal of Environmental Economics and Management, Elsevier, vol. 88(C), pages 180-209.
    17. Herman R.J. Vollebergh, 2006. "Differential Impact of Environmental Policy Instruments on Technological Change: A Review of the Empirical Literature," Tinbergen Institute Discussion Papers 07-042/3, Tinbergen Institute.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stavins, Robert, 2001. "Lessons From the American Experiment With Market-Based Environmental Policies," RFF Working Paper Series dp-01-53, Resources for the Future.
    2. Stavins, Robert N., 2003. "Experience with market-based environmental policy instruments," Handbook of Environmental Economics, in: K. G. Mäler & J. R. Vincent (ed.), Handbook of Environmental Economics, edition 1, volume 1, chapter 9, pages 355-435, Elsevier.
    3. Stowe, Robert C & Stavins, Robert Norman & Chan, Gabriel Angelo & Sweeney, Richard Leonard, 2012. "The SO2 Allowance Trading System and the Clean Air Act Amendments of 1990: Reflections on Twenty Years of Policy Innovation," Scholarly Articles 8160721, Harvard Kennedy School of Government.
    4. Burtraw, Dallas & Szambelan, Sarah Jo, 2009. "U.S. Emissions Trading Markets for SO2 and NOx," RFF Working Paper Series dp-09-40, Resources for the Future.
    5. Revesz, Richard & Stavins, Robert, 2004. "Environmental Law and Policy," Working Paper Series rwp04-023, Harvard University, John F. Kennedy School of Government.
    6. Stavins, Robert, 2004. "Environmental Economics," RFF Working Paper Series dp-04-54, Resources for the Future.
    7. Newell, Richard G & Stavins, Robert N, 2003. "Cost Heterogeneity and the Potential Savings from Market-Based Policies," Journal of Regulatory Economics, Springer, vol. 23(1), pages 43-59, January.
    8. Richard Schmalensee & Robert N. Stavins, 2019. "Policy Evolution under the Clean Air Act," Journal of Economic Perspectives, American Economic Association, vol. 33(4), pages 27-50, Fall.
    9. Richard Schmalensee & Robert N. Stavins, 2013. "The SO 2 Allowance Trading System: The Ironic History of a Grand Policy Experiment," Journal of Economic Perspectives, American Economic Association, vol. 27(1), pages 103-122, Winter.
    10. Richard Schmalensee & Robert N. Stavins, 2017. "Lessons Learned from Three Decades of Experience with Cap and Trade," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 11(1), pages 59-79.
    11. Popp, David & Newell, Richard G. & Jaffe, Adam B., 2010. "Energy, the Environment, and Technological Change," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 873-937, Elsevier.
    12. Burtraw, Dallas & Evans, David A. & Krupnick, Alan J. & Palmer, Karen L. & Toth, Russell, 2005. "Economics of Pollution Trading for SO2 and NOx," Discussion Papers 10488, Resources for the Future.
    13. Ann E. Ferris & Ronald J. Shadbegian & Ann Wolverton, 2014. "The Effect of Environmental Regulation on Power Sector Employment: Phase I of the Title IV SO2 Trading Program," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 1(4), pages 521-553.
    14. Stavins, Robert, 2003. "Market-Based Environmental Policies: What Can We Learn from U.S. Experience and Related Research?," Working Paper Series rwp03-031, Harvard University, John F. Kennedy School of Government.
    15. Stavins, Robert N., 2019. "The Future of U.S. Carbon-Pricing Policy: Normative Assessment and Positive Prognosis," Working Paper Series rwp19-017, Harvard University, John F. Kennedy School of Government.
    16. Gagelmann, Frank, 2003. "E.T. and innovation - science fiction or reality? An assessment of the impact of emissions trading on innovation," UFZ Discussion Papers 13/2003, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    17. Marit E. Klemetsen & Brita Bye & Arvid Raknerud, 2018. "Can Direct Regulations Spur Innovations in Environmental Technologies? A Study on Firm‐Level Patenting," Scandinavian Journal of Economics, Wiley Blackwell, vol. 120(2), pages 338-371, April.
    18. Rabah Amir & Adriana Gama & Katarzyna Werner, 2018. "On Environmental Regulation of Oligopoly Markets: Emission versus Performance Standards," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 70(1), pages 147-167, May.
    19. Vitaliy Roud & Thomas Wolfgang Thurner, 2018. "The Influence of State‐Ownership on Eco‐Innovations in Russian Manufacturing Firms," Journal of Industrial Ecology, Yale University, vol. 22(5), pages 1213-1227, October.
    20. Stavins, Robert & Jaffe, Adam & Newell, Richard, 2000. "Technological Change and the Environment," Working Paper Series rwp00-002, Harvard University, John F. Kennedy School of Government.

    More about this item

    JEL classification:

    • Q52 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Pollution Control Adoption and Costs; Distributional Effects; Employment Effects
    • Q55 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Technological Innovation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uwp:landec:v:81:y:2005:i:4:p546-556. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://le.uwpress.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.