IDEAS home Printed from https://ideas.repec.org/a/uwp/landec/v64y1985i4p347-353.html
   My bibliography  Save this article

The Optimal Forest Rotation with Evolving Prices

Author

Listed:
  • David H. Newman
  • Charles B. Gilbert
  • William F. Hyde

Abstract

No abstract is available for this item.

Suggested Citation

  • David H. Newman & Charles B. Gilbert & William F. Hyde, 1985. "The Optimal Forest Rotation with Evolving Prices," Land Economics, University of Wisconsin Press, vol. 64(4), pages 347-353.
  • Handle: RePEc:uwp:landec:v:64:y:1985:i:4:p:347-353
    as

    Download full text from publisher

    File URL: http://www.jstor.org/stable/pdfplus/3146152
    Download Restriction: A subscripton is required to access pdf files. Pay per article is available.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ben Abdallah, Skander & Lasserre, Pierre, 2016. "Asset retirement with infinitely repeated alternative replacements: Harvest age and species choice in forestry," Journal of Economic Dynamics and Control, Elsevier, vol. 70(C), pages 144-164.
    2. Rakotoarison, Hanitra & Loisel, Patrice, 2016. "The Faustmann model under storm risk and price uncertainty: A case study of European beech in Northwestern France," MPRA Paper 85114, University Library of Munich, Germany.
    3. Ken Stollery, 2001. "Climate Change and Optimal Rotation in a Flammable Forest," Working Papers 01001, University of Waterloo, Department of Economics, revised Jan 2001.
    4. Ben Abdallah, Skander & Lasserre, Pierre, 2017. "Forest land value and rotation with an alternative land use," Journal of Forest Economics, Elsevier, vol. 29(PB), pages 118-127.
    5. Zhang, Daowei, 2001. "Faustmann in an uncertain policy environment," Forest Policy and Economics, Elsevier, vol. 2(2), pages 203-210, June.
    6. Garcia, Marissa C. & Lee, Donna J., 1998. "Public Forest Resource Management In The Philippines: Timber Production, Externalities, And Agricultural Expansion," 1998 Annual meeting, August 2-5, Salt Lake City, UT 20972, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    7. Maria A. Cunha‐e‐Sá & Sofia F. Franco, 2017. "The Effects of Development Constraints on Forest Management at the Urban‐Forest Interface," American Journal of Agricultural Economics, John Wiley & Sons, vol. 99(3), pages 614-636, April.
    8. Sedjo, Roger & Sohngen, Brent, 1996. "A Comparison of Timber Models for Use in Public Policy Analysis," RFF Working Paper Series dp-96-12, Resources for the Future.
    9. Cunha-e-Sá, Maria A. & Rosa, Renato & Costa-Duarte, Clara, 2013. "Natural carbon capture and storage (NCCS): Forests, land use and carbon accounting," Resource and Energy Economics, Elsevier, vol. 35(2), pages 148-170.
    10. Wu, Tong & Lawell, C.Y. Cynthia Lin & Just, David R. & Zhao, Jiancheng & Fei, Zhangjun & Wei, Qiang, 2022. "Optimal Forest Management for Interdependent Products: A Nested Dynamic Bioeconomic Model and Application to Bamboo," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322164, Agricultural and Applied Economics Association.
    11. Skander BEN ABDALLAH & Pierre LASSERRE, 2015. "Optimum Forest Rotations of Alternative Tree Species," Cahiers de recherche 06-2015, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    12. M.J. Penttinen, 2000. "Timber Harvesting with Variable Prices and Costs," Working Papers ir00045, International Institute for Applied Systems Analysis.
    13. Newman, D.H., 2002. "Forestry's golden rule and the development of the optimal forest rotation literature," Journal of Forest Economics, Elsevier, vol. 8(1), pages 5-27.
    14. Gan, Jianbang & Kolison, Stephen H. & Colletti, Joe P., 2001. "Optimal forest stock and harvest with valuing non-timber benefits: a case of US coniferous forests," Forest Policy and Economics, Elsevier, vol. 2(2), pages 167-178, June.
    15. Lien, G. & Stordal, S. & Hardaker, J.B. & Asheim, L.J., 2007. "Risk aversion and optimal forest replanting: A stochastic efficiency study," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1584-1592, September.
    16. Melstrom, Richard T. & Salau, Kehinde Rilwan & Shanafelt, David W., 2019. "The Optimal Timing of Reintroducing Captive Populations Into the Wild," Ecological Economics, Elsevier, vol. 156(C), pages 174-184.
    17. Halbritter, Andreas & Deegen, Peter, 2011. "Economic analysis of exploitation and regeneration in plantations with problematic site productivity," Journal of Forest Economics, Elsevier, vol. 17(3), pages 319-334, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uwp:landec:v:64:y:1985:i:4:p:347-353. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://le.uwpress.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.