IDEAS home Printed from https://ideas.repec.org/a/ura/ecregj/v1y2013i3p281-290.html
   My bibliography  Save this article

Comprehensive estimation model of MERGE: adaptation to current state of world economy

Author

Listed:
  • Boris Digas

    (Krasovskii Institute of Mathematics and Mechanics, UB RAS)

  • Valeriy Rozenberg

Abstract

The optimizing interdisciplinary MERGE model meant mainly for quantitative estimation of outcomes of various nature protection strategy is one of the tools used for studying the climate change problems. Components of a model are the economical and power module, climatic module and module of damage assessment. The main attention in work is paid to the MERGE model adaptation to a world economy current state, and analysis of possible trajectories of economic development of Russia and studying of consequences of country participation in initiatives for emission abatement of greenhouse gases at the various assumptions on dynamics of regional economic and power indicators. As a source of model scenarios of development of the Russian economy, the forecast of long-term socioeconomic development of the country for the period up to 2030 is used. They made by the Ministry of Economic Development of the Russian Federation (namely, the conservative, innovative and forced scenarios defined by different models of state policy for ensuring macroeconomic balance are considered).

Suggested Citation

  • Boris Digas & Valeriy Rozenberg, 2013. "Comprehensive estimation model of MERGE: adaptation to current state of world economy," Economy of region, Centre for Economic Security, Institute of Economics of Ural Branch of Russian Academy of Sciences, vol. 1(3), pages 281-290.
  • Handle: RePEc:ura:ecregj:v:1:y:2013:i:3:p:281-290
    as

    Download full text from publisher

    File URL: http://economyofregion.ru/Data/Issues/ER2013/September_2013/ERSeptember2013_281_290.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Manne, Alan & Mendelsohn, Robert & Richels, Richard, 1995. "MERGE : A model for evaluating regional and global effects of GHG reduction policies," Energy Policy, Elsevier, vol. 23(1), pages 17-34, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khanna, Neha & Chapman, Duane, 1997. "Climate Policy and Petroleum Depletion in an Optimal Growth Framework," Staff Papers 121172, Cornell University, Department of Applied Economics and Management.
    2. Li, Y.P. & Huang, G.H. & Chen, X., 2011. "An interval-valued minimax-regret analysis approach for the identification of optimal greenhouse-gas abatement strategies under uncertainty," Energy Policy, Elsevier, vol. 39(7), pages 4313-4324, July.
    3. Carolyn Fischer & Richard D. Morgenstern, 2006. "Carbon Abatement Costs: Why the Wide Range of Estimates?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 73-86.
    4. Frankel, Jeffrey A. & Bosetti, Valentina, 2011. "Politically Feasible Emission Target Formulas to Attain 460 ppm CO[subscript 2] Concentrations," Working Paper Series rwp11-016, Harvard University, John F. Kennedy School of Government.
    5. Roberto Roson & Francesco Bosello, 2007. "Estimating a Climate Change Damage Function through General Equilibrium Modeling," Working Papers 2007_08, Department of Economics, University of Venice "Ca' Foscari".
    6. Farrokhifar, Meisam & Nie, Yinghui & Pozo, David, 2020. "Energy systems planning: A survey on models for integrated power and natural gas networks coordination," Applied Energy, Elsevier, vol. 262(C).
    7. Roberto Roson & Martina Sartori, 2016. "Estimation of Climate Change Damage Functions for 140 Regions in the GTAP 9 Database," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 1(2), pages 78-115, December.
    8. Hart, Rob & Spiro, Daniel, 2011. "The elephant in Hotelling's room," Energy Policy, Elsevier, vol. 39(12), pages 7834-7838.
    9. Pan, Xunzhang & Teng, Fei & Wang, Gehua, 2014. "A comparison of carbon allocation schemes: On the equity-efficiency tradeoff," Energy, Elsevier, vol. 74(C), pages 222-229.
    10. Uzma Hanif & Shabib Haider Syed & Rafique Ahmad & Kauser Abdullah Malik, 2010. "Economic Impact of Climate Change on the Agricultural Sector of Punjab," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 49(4), pages 771-798.
    11. Kelly C. de Bruin & Rob B. Dellink & Richard S.J. Tol, 2007. "AD-DICE: An Implementation of Adaptation in the DICE Mode," Working Papers 2007.51, Fondazione Eni Enrico Mattei.
    12. Zhu, Yongbin & Shi, Yajuan & Wang, Zheng, 2014. "How much CO2 emissions will be reduced through industrial structure change if China focuses on domestic rather than international welfare?," Energy, Elsevier, vol. 72(C), pages 168-179.
    13. Bosello, Francesco & Carraro, Carlo & De Cian, Enrica, 2013. "Adaptation can help mitigation: an integrated approach to post-2012 climate policy," Environment and Development Economics, Cambridge University Press, vol. 18(3), pages 270-290, June.
    14. Elin Berg & Snorre Kverndokk & Knut Einar Rosendahl, 1999. "Optimal Oil Exploration under Climate Treaties," Discussion Papers 245, Statistics Norway, Research Department.
    15. Valentina Bosetti & Jeffrey Frankel, 2012. "Politically Feasible Emissions Targets to Attain 460 ppm CO 2 Concentrations," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 6(1), pages 86-109.
    16. Zhu, Xueqin & van Ierland, Ekko, 2006. "The enlargement of the European Union: Effects on trade and emissions of greenhouse gases," Ecological Economics, Elsevier, vol. 57(1), pages 1-14, April.
    17. Erica Perego & Lionel Fontagné & Gianluca Santoni, 2022. "MaGE 3.1: Long-term macroeconomic projections of the World economy," International Economics, CEPII research center, issue 172, pages 168-189.
    18. Alexander Golub & Oleg Lugovoy & Anil Markandya & Ramon Arigoni Ortiz & James Wang, 2013. "Regional IAM: analysis of risk-adjusted costs and benefits of climate policies," Working Papers 2013-06, BC3.
    19. Carraro, Carlo & Aldy, Joseph & Pizer, William A. & Akimoto, Keigo & Tavoni, Massimo & Aleluia Reis, Lara, 2018. "Learning from Nationally Determined Contributions," CEPR Discussion Papers 12757, C.E.P.R. Discussion Papers.
    20. Berg, Elin & Kverndokk, Snorre & Rosendahl, Knut Einar, 1998. "Gains from cartelisation in the oil market," Energy Policy, Elsevier, vol. 26(9), pages 725-727, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ura:ecregj:v:1:y:2013:i:3:p:281-290. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alexey Naydenov (email available below). General contact details of provider: http://www.economyofregion.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.