IDEAS home Printed from https://ideas.repec.org/a/tsj/stataj/v10y2010i3p369-385.html
   My bibliography  Save this article

simsum: Analyses of simulation studies including Monte Carlo error

Author

Listed:
  • Ian R. White

    (MRC Biostatistics Unit)

Abstract

A new Stata command, simsum, analyzes data from simulation studies. The data may comprise point estimates and standard errors from several analysis methods, possibly resulting from several different simulation settings. simsum can report bias, coverage, power, empirical standard error, relative precision, average model-based standard error, and the relative error of the standard error. Monte Carlo errors are available for all of these estimated quantities. Copyright 2010 by StataCorp LP.

Suggested Citation

  • Ian R. White, 2010. "simsum: Analyses of simulation studies including Monte Carlo error," Stata Journal, StataCorp LP, vol. 10(3), pages 369-385, September.
  • Handle: RePEc:tsj:stataj:v:10:y:2010:i:3:p:369-385
    Note: to access software from within Stata, net describe http://www.stata-journal.com/software/sj10-3/st0200/
    as

    Download full text from publisher

    File URL: http://www.stata-journal.com/article.html?article=st0200
    File Function: link to article download
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Patrick Royston, 2004. "Multiple imputation of missing values," Stata Journal, StataCorp LP, vol. 4(3), pages 227-241, September.
    2. Koehler, Elizabeth & Brown, Elizabeth & Haneuse, Sebastien J.-P. A., 2009. "On the Assessment of Monte Carlo Error in Simulation-Based Statistical Analyses," The American Statistician, American Statistical Association, vol. 63(2), pages 155-162.
    3. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tim Morris & Ella Marley-Zagar, 2023. "Coding robust simulation studies in Stata," Biostatistics and Epidemiology Virtual Symposium 2023 01, Stata Users Group.
    2. R. N. Rattihalli, 2023. "A Class of Multivariate Power Skew Symmetric Distributions: Properties and Inference for the Power-Parameter," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(2), pages 1356-1393, August.
    3. Edgar C. Merkle & Daniel Furr & Sophia Rabe-Hesketh, 2019. "Bayesian Comparison of Latent Variable Models: Conditional Versus Marginal Likelihoods," Psychometrika, Springer;The Psychometric Society, vol. 84(3), pages 802-829, September.
    4. Warrington Nicole M. & Tilling Kate & Howe Laura D. & Paternoster Lavinia & Pennell Craig E. & Wu Yan Yan & Briollais Laurent, 2014. "Robustness of the linear mixed effects model to error distribution assumptions and the consequences for genome-wide association studies," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 13(5), pages 567-587, October.
    5. Ng'ombe, John, 2019. "Economics of the Greenseeder Hand Planter, Discrete Choice Modeling, and On-Farm Field Experimentation," Thesis Commons jckt7, Center for Open Science.
    6. Brian Gin & Nicholas Sim & Anders Skrondal & Sophia Rabe-Hesketh, 2020. "A Dyadic IRT Model," Psychometrika, Springer;The Psychometric Society, vol. 85(3), pages 815-836, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David A. Wagstaff & Ofer Harel, 2011. "A closer examination of three small-sample approximations to the multiple-imputation degrees of freedom," Stata Journal, StataCorp LP, vol. 11(3), pages 403-419, September.
    2. Das, Debojyoti & Bhatia, Vaneet & Kumar, Surya Bhushan & Basu, Sankarshan, 2022. "Do precious metals hedge crude oil volatility jumps?," International Review of Financial Analysis, Elsevier, vol. 83(C).
    3. P.A.V.B. Swamy & I-Lok Chang & Jatinder S. Mehta & William H. Greene & Stephen G. Hall & George S. Tavlas, 2016. "Removing Specification Errors from the Usual Formulation of Binary Choice Models," Econometrics, MDPI, vol. 4(2), pages 1-21, June.
    4. Carlo Altavilla & Raffaella Giacomini & Giuseppe Ragusa, 2017. "Anchoring the yield curve using survey expectations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(6), pages 1055-1068, September.
    5. Fernando Rios-Avila & Gustavo Canavire-Bacarreza, 2018. "Standard-error correction in two-stage optimization models: A quasi–maximum likelihood estimation approach," Stata Journal, StataCorp LP, vol. 18(1), pages 206-222, March.
    6. Sandy Fréret & Denis Maguain, 2017. "The effects of agglomeration on tax competition: evidence from a two-regime spatial panel model on French data," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 24(6), pages 1100-1140, December.
    7. Ai, Chunrong & Chen, Xiaohong, 2007. "Estimation of possibly misspecified semiparametric conditional moment restriction models with different conditioning variables," Journal of Econometrics, Elsevier, vol. 141(1), pages 5-43, November.
    8. Ayouz, Mourad K. & Remaud, Herve, 2003. "The Internationalization Determinants Of The Small Agro-Food Firms: Hypotheses And Statistical Tests," International Food and Agribusiness Management Review, International Food and Agribusiness Management Association, vol. 5(2), pages 1-27.
    9. Broze, Laurence & Gourieroux, Christian, 1998. "Pseudo-maximum likelihood method, adjusted pseudo-maximum likelihood method and covariance estimators," Journal of Econometrics, Elsevier, vol. 85(1), pages 75-98, July.
    10. Sridhar, Shrihari & Naik, Prasad A. & Kelkar, Ajay, 2017. "Metrics unreliability and marketing overspending," International Journal of Research in Marketing, Elsevier, vol. 34(4), pages 761-779.
    11. Yen, Steven T. & Chern, Wen S. & Lee, Hwang-Jaw, 1991. "Effects Of Income Sources On Household Food Expenditures," 1991 Annual Meeting, August 4-7, Manhattan, Kansas 271167, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    12. Ruoxuan Xiong & Allison Koenecke & Michael Powell & Zhu Shen & Joshua T. Vogelstein & Susan Athey, 2021. "Federated Causal Inference in Heterogeneous Observational Data," Papers 2107.11732, arXiv.org, revised Apr 2023.
    13. Posch, Olaf, 2009. "Structural estimation of jump-diffusion processes in macroeconomics," Journal of Econometrics, Elsevier, vol. 153(2), pages 196-210, December.
    14. Koutmos, Dimitrios, 2012. "An intertemporal capital asset pricing model with heterogeneous expectations," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 22(5), pages 1176-1187.
    15. Gregory, Allan W. & McCurdy, Thomas H., 1986. "The unbiasedness hypothesis in the forward foreign exchange market: A specification analysis with application to France, Italy, Japan, the United Kingdom and West Germany," European Economic Review, Elsevier, vol. 30(2), pages 365-381, April.
    16. Lanot, Gauthier & Walker, Ian, 1998. "The union/non-union wage differential: An application of semi-parametric methods," Journal of Econometrics, Elsevier, vol. 84(2), pages 327-349, June.
    17. Harald Schoen, 2008. "Identity, Instrumental Self-Interest and Institutional Evaluations," European Union Politics, , vol. 9(1), pages 5-29, March.
    18. Magnus, Jan R., 2007. "The Asymptotic Variance Of The Pseudo Maximum Likelihood Estimator," Econometric Theory, Cambridge University Press, vol. 23(5), pages 1022-1032, October.
    19. Julia S. Goldberg, 2011. "Identity Salience and Involvement among Resident and Nonresident Fathers," Working Papers 1323, Princeton University, School of Public and International Affairs, Center for Research on Child Wellbeing..
    20. Özlem Onaran & Engelbert Stockhammer, 2006. "The effect of FDI and foreign trade on wages in the Central and Eastern European Countries in the post-transition era: A sectoral analysis," Department of Economics Working Papers wuwp094, Vienna University of Economics and Business, Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tsj:stataj:v:10:y:2010:i:3:p:369-385. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum or Lisa Gilmore (email available below). General contact details of provider: http://www.stata-journal.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.