IDEAS home Printed from https://ideas.repec.org/a/taf/uiiexx/v49y2017i7p682-697.html
   My bibliography  Save this article

Remaining useful life prediction based on the mixed effects model with mixture prior distribution

Author

Listed:
  • Raed Kontar
  • Junbo Son
  • Shiyu Zhou
  • Chaitanya Sankavaram
  • Yilu Zhang
  • Xinyu Du

Abstract

Modern engineering systems are gradually becoming more reliable and premature failure has become quite rare. As a result, degradation signal data used for prognosis are often imbalanced as most units are reliable and only few tend to fail at early stages of their life cycle. Such imbalanced data may hinder accurate Remaining Useful Life (RUL) prediction especially in terms of detecting premature failures as early as possible. This aspect is detrimental for developing cost-effective condition-based maintenance strategies. In this article, we propose a degradation signal–based RUL prediction method to address the imbalance issue in the data. The proposed method introduces a mixture prior distribution to capture the characteristics of different groups within the same population and provides an efficient and effective online prediction method for the in-service unit under monitoring. The advantageous features of the proposed method are demonstrated through a numerical study as well as a case study with real-world data in the application to the RUL prediction of automotive lead–acid batteries.

Suggested Citation

  • Raed Kontar & Junbo Son & Shiyu Zhou & Chaitanya Sankavaram & Yilu Zhang & Xinyu Du, 2017. "Remaining useful life prediction based on the mixed effects model with mixture prior distribution," IISE Transactions, Taylor & Francis Journals, vol. 49(7), pages 682-697, July.
  • Handle: RePEc:taf:uiiexx:v:49:y:2017:i:7:p:682-697
    DOI: 10.1080/24725854.2016.1263771
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/24725854.2016.1263771
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/24725854.2016.1263771?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yisha Xiang & David Coit & Qianmei Feng, 2013. "Subpopulations experiencing stochastic degradation: reliability modeling, burn-in, and preventive replacement optimization," IISE Transactions, Taylor & Francis Journals, vol. 45(4), pages 391-408.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jahani, Salman & Zhou, Shiyu & Veeramani, Dharmaraj, 2021. "Stochastic prognostics under multiple time-varying environmental factors," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    2. Mansouri, S. Afshin & Golmohammadi, Davood & Miller, Jason, 2019. "The moderating role of master production scheduling method on throughput in job shop systems," International Journal of Production Economics, Elsevier, vol. 216(C), pages 67-80.
    3. Ye, Zhenggeng & Yang, Hui & Cai, Zhiqiang & Si, Shubin & Zhou, Fuli, 2021. "Performance evaluation of serial-parallel manufacturing systems based on the impact of heterogeneous feedstocks on machine degradation," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    4. Li, Mingyang & Meng, Hongdao & Zhang, Qingpeng, 2017. "A nonparametric Bayesian modeling approach for heterogeneous lifetime data with covariates," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 95-104.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Yao & Wei, Yian & Liao, Haitao, 2022. "Optimal sampling-based sequential inspection and maintenance plans for a heterogeneous product with competing failure modes," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    2. Li, Mingyang & Meng, Hongdao & Zhang, Qingpeng, 2017. "A nonparametric Bayesian modeling approach for heterogeneous lifetime data with covariates," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 95-104.
    3. Hongda Gao & Dejing Kong & Yixin Sun, 2022. "Reliability modeling and analysis for systems governed by multiple competing failures processes," Journal of Risk and Reliability, , vol. 236(2), pages 256-265, April.
    4. Peng, Rui & Xiao, Hui & Guo, Jianjun & Lin, Chen, 2020. "Defending a parallel system against a strategic attacker with redundancy, protection and disinformation," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    5. David T. Abdul‐Malak & Jeffrey P. Kharoufeh & Lisa M. Maillart, 2019. "Maintaining systems with heterogeneous spare parts," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(6), pages 485-501, September.
    6. Veloso, Guilherme A. & Loschi, Rosangela H., 2021. "Dynamic linear degradation model: Dealing with heterogeneity in degradation paths," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    7. Santos, Cristiano C. & Loschi, Rosangela H., 2020. "Semi-parametric Bayesian models for heterogeneous degradation data: An application to laser data," Reliability Engineering and System Safety, Elsevier, vol. 202(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uiiexx:v:49:y:2017:i:7:p:682-697. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uiie .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.