IDEAS home Printed from https://ideas.repec.org/a/taf/uiiexx/v45y2013i4p391-408.html
   My bibliography  Save this article

Subpopulations experiencing stochastic degradation: reliability modeling, burn-in, and preventive replacement optimization

Author

Listed:
  • Yisha Xiang
  • David Coit
  • Qianmei Feng

Abstract

For some engineering design and manufacturing applications, particularly for evolving and new technologies, populations of manufactured components can be heterogeneous and consist of several subpopulations. The co-existence of n subpopulations is particularly common in devices when the manufacturing process is still maturing or highly variable. A new model is developed and demonstrated to simultaneously determine burn-in and age-based preventive replacement policies for populations composed of distinct subpopulations subject to stochastic degradation. Unlike traditional burn-in procedures that stress devices to failure, we present a decision rule that uses burn-in threshold on cumulative deterioration, in addition to burn-in time, to eliminate weak subpopulations. Only devices with post-burn-in deterioration levels below the burn-in threshold are released for field operations. Inspection errors are considered when screening burned-in devices. Preventive replacement is employed to prevent failures from occurring during field operation. We examine the effectiveness of such integrated polycies for non-homogeneous populations. Numerical examples are provided to illustrate the proposed procedure. Sensitivity analysis is performed to analyze the impacts of model parameters on optimal policies. Numerical results indicate there are potential cost savings from simutaneouly determining burn-in and maintenance policies as opposed to a traditional approach that makes decisions on burn-in and maintenance actions separately.

Suggested Citation

  • Yisha Xiang & David Coit & Qianmei Feng, 2013. "Subpopulations experiencing stochastic degradation: reliability modeling, burn-in, and preventive replacement optimization," IISE Transactions, Taylor & Francis Journals, vol. 45(4), pages 391-408.
  • Handle: RePEc:taf:uiiexx:v:45:y:2013:i:4:p:391-408
    DOI: 10.1080/0740817X.2012.689124
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/0740817X.2012.689124
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/0740817X.2012.689124?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheng, Yao & Wei, Yian & Liao, Haitao, 2022. "Optimal sampling-based sequential inspection and maintenance plans for a heterogeneous product with competing failure modes," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    2. Santos, Cristiano C. & Loschi, Rosangela H., 2020. "Semi-parametric Bayesian models for heterogeneous degradation data: An application to laser data," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    3. Hongda Gao & Dejing Kong & Yixin Sun, 2022. "Reliability modeling and analysis for systems governed by multiple competing failures processes," Journal of Risk and Reliability, , vol. 236(2), pages 256-265, April.
    4. Peng, Rui & Xiao, Hui & Guo, Jianjun & Lin, Chen, 2020. "Defending a parallel system against a strategic attacker with redundancy, protection and disinformation," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    5. Raed Kontar & Junbo Son & Shiyu Zhou & Chaitanya Sankavaram & Yilu Zhang & Xinyu Du, 2017. "Remaining useful life prediction based on the mixed effects model with mixture prior distribution," IISE Transactions, Taylor & Francis Journals, vol. 49(7), pages 682-697, July.
    6. David T. Abdul‐Malak & Jeffrey P. Kharoufeh & Lisa M. Maillart, 2019. "Maintaining systems with heterogeneous spare parts," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(6), pages 485-501, September.
    7. Li, Mingyang & Meng, Hongdao & Zhang, Qingpeng, 2017. "A nonparametric Bayesian modeling approach for heterogeneous lifetime data with covariates," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 95-104.
    8. Veloso, Guilherme A. & Loschi, Rosangela H., 2021. "Dynamic linear degradation model: Dealing with heterogeneity in degradation paths," Reliability Engineering and System Safety, Elsevier, vol. 210(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uiiexx:v:45:y:2013:i:4:p:391-408. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uiie .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.