IDEAS home Printed from https://ideas.repec.org/a/taf/uaajxx/v10y2006i1p30-48.html
   My bibliography  Save this article

Lognormal Mixed Models for Reported Claims Reserves

Author

Listed:
  • Katrien Antonio
  • Jan Beirlant
  • Tom Hoedemakers
  • Robert Verlaak

Abstract

Traditional claims-reserving techniques are based on so-called run-off triangles containing aggregate claim figures. Such a triangle provides a summary of an underlying data set with individual claim figures. This contribution explores the interpretation of the available individual data in the framework of longitudinal data analysis. Making use of the theory of linear mixed models, a flexible model for loss reserving is built. Whereas traditional claims-reserving techniques don’t lead directly to predictions for individual claims, the mixed model enables such predictions on a sound statistical basis with, for example, confidence regions. Both a likelihood-based as well as a Bayesian approach are considered. In the frequentist approach, expressions for the mean squared error of prediction of an individual claim reserve, origin year reserves, and the total reserve are derived. Using MCMC techniques, the Bayesian approach allows simulation from the complete predictive distribution of the reserves and the calculation of various risk measures. The paper ends with an illustration of the suggested techniques on a data set from practice, consisting of Belgian automotive third-party liability claims. The results for the mixed-model analysis are compared with those obtained from traditional claims-reserving techniques for run-off triangles. For the data under consideration, the lognormal mixed model fits the observed individual data well. It leads to individual predictions comparable to those obtained by applying chain-ladder development factors to individual data. Concerning the predictive power on the aggregate level, the mixed model leads to reasonable predictions and performs comparable to and often better than the stochastic chain ladder for aggregate data.

Suggested Citation

  • Katrien Antonio & Jan Beirlant & Tom Hoedemakers & Robert Verlaak, 2006. "Lognormal Mixed Models for Reported Claims Reserves," North American Actuarial Journal, Taylor & Francis Journals, vol. 10(1), pages 30-48.
  • Handle: RePEc:taf:uaajxx:v:10:y:2006:i:1:p:30-48
    DOI: 10.1080/10920277.2006.10596238
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10920277.2006.10596238
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10920277.2006.10596238?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paulsen, Jostein & Lunde, Astrid & Skaug, Hans Julius, 2008. "Fitting mixed-effects models when data are left truncated," Insurance: Mathematics and Economics, Elsevier, vol. 43(1), pages 121-133, August.
    2. Antonio, Katrien & Beirlant, Jan, 2007. "Actuarial statistics with generalized linear mixed models," Insurance: Mathematics and Economics, Elsevier, vol. 40(1), pages 58-76, January.
    3. Gigante, Patrizia & Picech, Liviana & Sigalotti, Luciano, 2013. "Claims reserving in the hierarchical generalized linear model framework," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 381-390.
    4. Huang, Jinlong & Qiu, Chunjuan & Wu, Xianyi & Zhou, Xian, 2015. "An individual loss reserving model with independent reporting and settlement," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 232-245.
    5. Eduardo Ramos-P'erez & Pablo J. Alonso-Gonz'alez & Jos'e Javier N'u~nez-Vel'azquez, 2020. "Stochastic reserving with a stacked model based on a hybridized Artificial Neural Network," Papers 2008.07564, arXiv.org.
    6. Alicja Wolny-Dominiak, 2016. "The hierarchical generalized linear model and the bootstrap estimator of the error of prediction of loss reserves in a non-life insurance company," Papers 1612.04126, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:uaajxx:v:10:y:2006:i:1:p:30-48. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/uaaj .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.