IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1612.04126.html
   My bibliography  Save this paper

The hierarchical generalized linear model and the bootstrap estimator of the error of prediction of loss reserves in a non-life insurance company

Author

Listed:
  • Alicja Wolny-Dominiak

Abstract

This paper presents the hierarchical generalized linear model (HGLM) for loss reserving in a non-life insurance company. Because in this case the error of prediction is expressed by a complex analytical formula, the error bootstrap estimator is proposed instead. Moreover, the bootstrap procedure is used to obtain full information about the error by applying quantiles of the absolute prediction error. The full R code is available on the Github https://github.com/woali/BootErrorLossReserveHGLM.

Suggested Citation

  • Alicja Wolny-Dominiak, 2016. "The hierarchical generalized linear model and the bootstrap estimator of the error of prediction of loss reserves in a non-life insurance company," Papers 1612.04126, arXiv.org.
  • Handle: RePEc:arx:papers:1612.04126
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1612.04126
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. England, Peter & Verrall, Richard, 1999. "Analytic and bootstrap estimates of prediction errors in claims reserving," Insurance: Mathematics and Economics, Elsevier, vol. 25(3), pages 281-293, December.
    2. Mack, Thomas, 1991. "A Simple Parametric Model for Rating Automobile Insurance or Estimating IBNR Claims Reserves," ASTIN Bulletin, Cambridge University Press, vol. 21(1), pages 93-109, April.
    3. Katrien Antonio & Jan Beirlant & Tom Hoedemakers & Robert Verlaak, 2006. "Lognormal Mixed Models for Reported Claims Reserves," North American Actuarial Journal, Taylor & Francis Journals, vol. 10(1), pages 30-48.
    4. Renshaw, A.E. & Verrall, R.J., 1998. "A Stochastic Model Underlying the Chain-Ladder Technique," British Actuarial Journal, Cambridge University Press, vol. 4(4), pages 903-923, October.
    5. Verrall, R. J., 2000. "An investigation into stochastic claims reserving models and the chain-ladder technique," Insurance: Mathematics and Economics, Elsevier, vol. 26(1), pages 91-99, February.
    6. Youngjo Lee & John Nelder, 2003. "Extended-REML estimators," Journal of Applied Statistics, Taylor & Francis Journals, vol. 30(8), pages 845-856.
    7. Mack, Thomas & Venter, Gary, 2000. "A comparison of stochastic models that reproduce chain ladder reserve estimates," Insurance: Mathematics and Economics, Elsevier, vol. 26(1), pages 101-107, February.
    8. Mack, Thomas, 1994. "Which stochastic model is underlying the chain ladder method?," Insurance: Mathematics and Economics, Elsevier, vol. 15(2-3), pages 133-138, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eduardo Ramos-P'erez & Pablo J. Alonso-Gonz'alez & Jos'e Javier N'u~nez-Vel'azquez, 2020. "Stochastic reserving with a stacked model based on a hybridized Artificial Neural Network," Papers 2008.07564, arXiv.org.
    2. Kunkler, Michael, 2006. "Modelling negatives in stochastic reserving models," Insurance: Mathematics and Economics, Elsevier, vol. 38(3), pages 540-555, June.
    3. Pitselis, Georgios & Grigoriadou, Vasiliki & Badounas, Ioannis, 2015. "Robust loss reserving in a log-linear model," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 14-27.
    4. Liivika Tee & Meelis Käärik & Rauno Viin, 2017. "On Comparison of Stochastic Reserving Methods with Bootstrapping," Risks, MDPI, vol. 5(1), pages 1-21, January.
    5. Eduardo Ramos-P'erez & Pablo J. Alonso-Gonz'alez & Jos'e Javier N'u~nez-Vel'azquez, 2022. "Mack-Net model: Blending Mack's model with Recurrent Neural Networks," Papers 2205.07334, arXiv.org.
    6. Paulo J. R. Pinheiro & João Manuel Andrade e Silva & Maria De Lourdes Centeno, 2003. "Bootstrap Methodology in Claim Reserving," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 70(4), pages 701-714, December.
    7. Hess, Klaus Th. & Schmidt, Klaus D., 2002. "A comparison of models for the chain-ladder method," Insurance: Mathematics and Economics, Elsevier, vol. 31(3), pages 351-364, December.
    8. Verrall, R.J. & England, P.D., 2005. "Incorporating expert opinion into a stochastic model for the chain-ladder technique," Insurance: Mathematics and Economics, Elsevier, vol. 37(2), pages 355-370, October.
    9. Wahl, Felix & Lindholm, Mathias & Verrall, Richard, 2019. "The collective reserving model," Insurance: Mathematics and Economics, Elsevier, vol. 87(C), pages 34-50.
    10. D Kuang & Bent Nielsen & J P Nielsen, 2013. "The Geometric Chain-Ladder," Economics Papers 2013-W11, Economics Group, Nuffield College, University of Oxford.
    11. England, P.D. & Verrall, R.J. & Wüthrich, M.V., 2019. "On the lifetime and one-year views of reserve risk, with application to IFRS 17 and Solvency II risk margins," Insurance: Mathematics and Economics, Elsevier, vol. 85(C), pages 74-88.
    12. Verdonck, T. & Debruyne, M., 2011. "The influence of individual claims on the chain-ladder estimates: Analysis and diagnostic tool," Insurance: Mathematics and Economics, Elsevier, vol. 48(1), pages 85-98, January.
    13. Benjamin Avanzi & Xingyun Tan & Greg Taylor & Bernard Wong, 2023. "On the evolution of data breach reporting patterns and frequency in the United States: a cross-state analysis," Papers 2310.04786, arXiv.org, revised Jun 2024.
    14. England, Peter, 2002. "Addendum to "Analytic and bootstrap estimates of prediction errors in claims reserving"," Insurance: Mathematics and Economics, Elsevier, vol. 31(3), pages 461-466, December.
    15. Gian Paolo Clemente & Nino Savelli & Diego Zappa, 2019. "Modelling Outstanding Claims with Mixed Compound Processes in Insurance," International Business Research, Canadian Center of Science and Education, vol. 12(3), pages 123-138, March.
    16. Marie Michaelides & Mathieu Pigeon & H'el`ene Cossette, 2022. "Individual Claims Reserving using Activation Patterns," Papers 2208.08430, arXiv.org, revised Aug 2023.
    17. Benjamin Avanzi & Yanfeng Li & Bernard Wong & Alan Xian, 2022. "Ensemble distributional forecasting for insurance loss reserving," Papers 2206.08541, arXiv.org, revised Jun 2024.
    18. Steinmetz, Julia & Jentsch, Carsten, 2024. "Bootstrap consistency for the Mack bootstrap," Insurance: Mathematics and Economics, Elsevier, vol. 115(C), pages 83-121.
    19. Schmidt, Klaus D., 2002. "A note on the overdispersed Poisson family," Insurance: Mathematics and Economics, Elsevier, vol. 30(1), pages 21-25, February.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1612.04126. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.