IDEAS home Printed from https://ideas.repec.org/a/taf/tsysxx/v46y2015i2p193-208.html
   My bibliography  Save this article

Pinning impulsive directed coupled delayed dynamical network and its applications

Author

Listed:
  • Chunnan Lin
  • Quanjun Wu
  • Lan Xiang
  • Jin Zhou

Abstract

The main objective of the present paper is to further investigate pinning synchronisation of a complex delayed dynamical network with directionally coupling by a single impulsive controller. By developing the analysis procedure of pinning impulsive stability for undirected coupled dynamical network previously, some simple yet general criteria of pinning impulsive synchronisation for such directed coupled network are derived analytically. It is shown that a single impulsive controller can always pin a given directed coupled network to a desired homogenous solution, including an equilibrium point, a periodic orbit, or a chaotic orbit. Subsequently, the theoretical results are illustrated by a directed small-world complex network which is a cellular neural network (CNN) and a directed scale-free complex network with the well-known Hodgkin–Huxley neuron oscillators. Numerical simulations are finally given to demonstrate the effectiveness of the proposed control methodology.

Suggested Citation

  • Chunnan Lin & Quanjun Wu & Lan Xiang & Jin Zhou, 2015. "Pinning impulsive directed coupled delayed dynamical network and its applications," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(2), pages 193-208, January.
  • Handle: RePEc:taf:tsysxx:v:46:y:2015:i:2:p:193-208
    DOI: 10.1080/00207721.2014.962646
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207721.2014.962646
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207721.2014.962646?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Haibo Jiang & Jianjiang Yu & Caigen Zhou, 2011. "Consensus of multi-agent linear dynamic systems impulsive control protocols," International Journal of Systems Science, Taylor & Francis Journals, vol. 42(6), pages 967-976.
    2. Guan Wang & Yi Shen, 2013. "Cluster synchronisation of directed complex dynamical networks with nonidentical nodes via pinning control," International Journal of Systems Science, Taylor & Francis Journals, vol. 44(9), pages 1577-1586.
    3. Quanjun Wu & Jin Zhou & Lan Xiang, 2012. "Impulsive consensus seeking in directed networks of multi-agent systems with communication time delays," International Journal of Systems Science, Taylor & Francis Journals, vol. 43(8), pages 1479-1491.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Lingfeng & Liu, Kui & Xiang, Hongyue & Liu, Qian, 2020. "Pinning impulsive cluster synchronization of complex dynamical network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guoguang Wen & Zhaoxia Peng & Ahmed Rahmani & Yongguang Yu, 2014. "Distributed leader-following consensus for second-order multi-agent systems with nonlinear inherent dynamics," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(9), pages 1892-1901, September.
    2. Fenglan Sun & Xiaogang Liao & Yongfu Li & Feng Liu, 2019. "Consensus for Mixed-Order Multiagent Systems over Jointly Connected Topologies via Impulse Control," Complexity, Hindawi, vol. 2019, pages 1-7, January.
    3. Yulian Jiang & Jianchang Liu & Shubin Tan & Pingsong Ming, 2014. "Robust consensus algorithm for multi-agent systems with exogenous disturbances under convergence conditions," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(9), pages 1869-1879, September.
    4. Bin Hu & Zhi-Hong Guan & Rui-Quan Liao & Ding-Xue Zhang & Gui-Lin Zheng, 2015. "Consensus-based distributed optimisation of multi-agent networks via a two level subgradient-proximal algorithm," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(7), pages 1307-1318, May.
    5. Gao, Zilin & Guo, Changyuan & Li, Yongfu & Liu, Lizhi & Luo, Weimin, 2023. "Stabilization of a structurally balanced complex network with similar nodes of different dimensions," Applied Mathematics and Computation, Elsevier, vol. 458(C).
    6. Yunpeng Wang & Long Cheng & Zeng-Guang Hou & Min Tan & Chao Zhou & Ming Wang, 2015. "Consensus seeking in a network of discrete-time linear agents with communication noises," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(10), pages 1874-1888, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tsysxx:v:46:y:2015:i:2:p:193-208. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TSYS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.