IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v55y2017i7p1957-1969.html
   My bibliography  Save this article

System reliability for a multistate intermodal logistics network with time windows

Author

Listed:
  • Yi-Kuei Lin
  • Cheng-Fu Huang
  • Yi-Chieh Liao
  • Chih-Ching Yeh

Abstract

Network structures have been diffusely adopted in logistics systems, where the most critical target is completing the delivery within the promised timeframe. This paper focuses on a single commodity in a multistate intermodal logistics network (MILN) with transit stations and routes to involve three parameters: a route’s capacity, delivery time and time window. There is a carrier along each route whose number of available containers is multistate because the containers can be occupied by other customers. The delivery time consisting of the service time, travel time and waiting time varies with the number of containers and vehicle type. The arrival time at the transit station should be within the time window, the interval between the earliest and latest acceptable arrival times. This paper evaluates the system reliability, the probability that the MILN can successfully deliver sufficient amount of the commodity to meet market demand via several transit stations under the delivery time threshold and time windows. The system reliability can be treated as a delivery performance index and is evaluated with a proposed algorithm in terms of minimal paths. A practical case of scooter parts distribution between Taiwan and China is presented to emphasise the management implications of system reliability.

Suggested Citation

  • Yi-Kuei Lin & Cheng-Fu Huang & Yi-Chieh Liao & Chih-Ching Yeh, 2017. "System reliability for a multistate intermodal logistics network with time windows," International Journal of Production Research, Taylor & Francis Journals, vol. 55(7), pages 1957-1969, April.
  • Handle: RePEc:taf:tprsxx:v:55:y:2017:i:7:p:1957-1969
    DOI: 10.1080/00207543.2016.1247997
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2016.1247997
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2016.1247997?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Limbourg, S. & Jourquin, B., 2009. "Optimal rail-road container terminal locations on the European network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 45(4), pages 551-563, July.
    2. Marius M. Solomon, 1987. "Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints," Operations Research, INFORMS, vol. 35(2), pages 254-265, April.
    3. A. W. J. Kolen & A. H. G. Rinnooy Kan & H. W. J. M. Trienekens, 1987. "Vehicle Routing with Time Windows," Operations Research, INFORMS, vol. 35(2), pages 266-273, April.
    4. Joseph C. Hudson & Kailash C. Kapur, 1985. "Reliability Bounds for Multistate Systems with Multistate Components," Operations Research, INFORMS, vol. 33(1), pages 153-160, February.
    5. Bookbinder, James H. & Fox, Neil S., 1998. "Intermodal routing of Canada-Mexico shipments under NAFTA," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 34(4), pages 289-303, December.
    6. Lin, Yi-Kuei & Yeh, Cheng-Ta, 2010. "Optimal carrier selection based on network reliability criterion for stochastic logistics networks," International Journal of Production Economics, Elsevier, vol. 128(2), pages 510-517, December.
    7. Givoni, Moshe & Banister, David, 2006. "Airline and railway integration," Transport Policy, Elsevier, vol. 13(5), pages 386-397, September.
    8. Zhang, Junlong & Lam, William H.K. & Chen, Bi Yu, 2016. "On-time delivery probabilistic models for the vehicle routing problem with stochastic demands and time windows," European Journal of Operational Research, Elsevier, vol. 249(1), pages 144-154.
    9. J.H. Ruan & X.P. Wang & F.T.S. Chan & Y. Shi, 2016. "Optimizing the intermodal transportation of emergency medical supplies using balanced fuzzy clustering," International Journal of Production Research, Taylor & Francis Journals, vol. 54(14), pages 4368-4386, July.
    10. Ghane-Ezabadi, Mohammad & Vergara, Hector A., 2016. "Decomposition approach for integrated intermodal logistics network design," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 89(C), pages 53-69.
    11. Macharis, C. & Bontekoning, Y. M., 2004. "Opportunities for OR in intermodal freight transport research: A review," European Journal of Operational Research, Elsevier, vol. 153(2), pages 400-416, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dan Liu & Zhenghong Deng & Qipeng Sun & Yong Wang & Yinhai Wang, 2019. "Design and Freight Corridor-Fleet Size Choice in Collaborative Intermodal Transportation Network Considering Economies of Scale," Sustainability, MDPI, vol. 11(4), pages 1-19, February.
    2. Dixit, Vijaya & Verma, Priyanka & Tiwari, Manoj Kumar, 2020. "Assessment of pre and post-disaster supply chain resilience based on network structural parameters with CVaR as a risk measure," International Journal of Production Economics, Elsevier, vol. 227(C).
    3. Yeh, Wei-Chang, 2023. "Novel recursive inclusion-exclusion technology based on BAT and MPs for heterogeneous-arc binary-state network reliability problems," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    4. Nupur Goyal & Mangey Ram & Akshay Kumar & Soni Bisht & Yury Klochkov, 2021. "Reliability Measures and Profit Exploration of Windmill Water-Pumping Systems Incorporating Warranty and Two Types of Repair," Mathematics, MDPI, vol. 9(8), pages 1-14, April.
    5. Niu, Yi-Feng & Zhao, Xia & Xu, Xiu-Zhen & Zhang, Shi-Yun, 2023. "Reliability assessment of a stochastic-flow distribution network with carbon emission constraint," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    6. Zarghami, Seyed Ashkan & Dumrak, Jantanee, 2021. "Unearthing vulnerability of supply provision in logistics networks to the black swan events: Applications of entropy theory and network analysis," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    7. Wang, Wenzhuo & He, Yihai & Liao, Ruoyu & Cai, Yuqi & Zheng, Xin & Zhao, Yu, 2022. "Mission reliability driven functional healthy state modeling approach considering production rhythm and workpiece quality for manufacturing systems," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    8. Riccardo Aldrighetti & Ilenia Zennaro & Serena Finco & Daria Battini, 2019. "Healthcare Supply Chain Simulation with Disruption Considerations: A Case Study from Northern Italy," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 20(1), pages 81-102, December.
    9. Alexander Pavlov & Dmitry Ivanov & Frank Werner & Alexandre Dolgui & Boris Sokolov, 2022. "Integrated detection of disruption scenarios, the ripple effect dispersal and recovery paths in supply chains," Annals of Operations Research, Springer, vol. 319(1), pages 609-631, December.
    10. Cheng-Fu Huang, 2022. "System reliability for a multi-state distribution network with multiple terminals under stocks," Annals of Operations Research, Springer, vol. 311(1), pages 117-130, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi-Kuei Lin & Cheng-Fu Huang & Yi-Chieh Liao, 2019. "Reliability of a stochastic intermodal logistics network under spoilage and time considerations," Annals of Operations Research, Springer, vol. 277(1), pages 95-118, June.
    2. Chia-Nan Wang & Thanh-Tuan Dang & Tran Quynh Le & Panitan Kewcharoenwong, 2020. "Transportation Optimization Models for Intermodal Networks with Fuzzy Node Capacity, Detour Factor, and Vehicle Utilization Constraints," Mathematics, MDPI, vol. 8(12), pages 1-27, November.
    3. Sina Mohri, Seyed & Thompson, Russell, 2022. "Designing sustainable intermodal freight transportation networks using a controlled rail tariff discounting policy – The Iranian case," Transportation Research Part A: Policy and Practice, Elsevier, vol. 157(C), pages 59-77.
    4. Archetti, Claudia & Peirano, Lorenzo & Speranza, M. Grazia, 2022. "Optimization in multimodal freight transportation problems: A Survey," European Journal of Operational Research, Elsevier, vol. 299(1), pages 1-20.
    5. Martine Mostert & An Caris & Sabine Limbourg, 2018. "Intermodal network design: a three-mode bi-objective model applied to the case of Belgium," Flexible Services and Manufacturing Journal, Springer, vol. 30(3), pages 397-420, September.
    6. Ishfaq, Rafay & Sox, Charles R., 2011. "Hub location-allocation in intermodal logistic networks," European Journal of Operational Research, Elsevier, vol. 210(2), pages 213-230, April.
    7. Qian Dai & Jiaqi Yang & Dong Li, 2018. "Modeling a Three-Mode Hybrid Port-Hinterland Freight Intermodal Distribution Network with Environmental Consideration: The Case of the Yangtze River Economic Belt in China," Sustainability, MDPI, vol. 10(9), pages 1-26, August.
    8. Zhang, M. & Pel, A.J., 2016. "Synchromodal hinterland freight transport: Model study for the port of Rotterdam," Journal of Transport Geography, Elsevier, vol. 52(C), pages 1-10.
    9. Luca Maria Gambardella & Marco Dorigo, 2000. "An Ant Colony System Hybridized with a New Local Search for the Sequential Ordering Problem," INFORMS Journal on Computing, INFORMS, vol. 12(3), pages 237-255, August.
    10. Calvete, Herminia I. & Gale, Carmen & Oliveros, Maria-Jose & Sanchez-Valverde, Belen, 2007. "A goal programming approach to vehicle routing problems with soft time windows," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1720-1733, March.
    11. Liu, Fuh-Hwa Franklin & Shen, Sheng-Yuan, 1999. "A route-neighborhood-based metaheuristic for vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 118(3), pages 485-504, November.
    12. Müller, Juliane, 2010. "Approximative solutions to the bicriterion Vehicle Routing Problem with Time Windows," European Journal of Operational Research, Elsevier, vol. 202(1), pages 223-231, April.
    13. Diana, Marco & Dessouky, Maged M., 2004. "A new regret insertion heuristic for solving large-scale dial-a-ride problems with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 38(6), pages 539-557, July.
    14. Teye, Collins & Bell, Michael G.H. & Bliemer, Michiel C.J., 2017. "Entropy maximising facility location model for port city intermodal terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 100(C), pages 1-16.
    15. Low, Chinyao & Chang, Chien-Min & Li, Rong-Kwei & Huang, Chia-Ling, 2014. "Coordination of production scheduling and delivery problems with heterogeneous fleet," International Journal of Production Economics, Elsevier, vol. 153(C), pages 139-148.
    16. Diego Cattaruzza & Nabil Absi & Dominique Feillet, 2018. "Vehicle routing problems with multiple trips," Annals of Operations Research, Springer, vol. 271(1), pages 127-159, December.
    17. Jeffrey W. Ohlmann & Barrett W. Thomas, 2007. "A Compressed-Annealing Heuristic for the Traveling Salesman Problem with Time Windows," INFORMS Journal on Computing, INFORMS, vol. 19(1), pages 80-90, February.
    18. Diego Cattaruzza & Nabil Absi & Dominique Feillet, 2016. "Vehicle routing problems with multiple trips," 4OR, Springer, vol. 14(3), pages 223-259, September.
    19. Belfiore, PatrI´cia & Yoshida Yoshizaki, Hugo Tsugunobu, 2009. "Scatter search for a real-life heterogeneous fleet vehicle routing problem with time windows and split deliveries in Brazil," European Journal of Operational Research, Elsevier, vol. 199(3), pages 750-758, December.
    20. Yan Sun & Xinya Li, 2019. "Fuzzy Programming Approaches for Modeling a Customer-Centred Freight Routing Problem in the Road-Rail Intermodal Hub-and-Spoke Network with Fuzzy Soft Time Windows and Multiple Sources of Time Uncerta," Mathematics, MDPI, vol. 7(8), pages 1-40, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:55:y:2017:i:7:p:1957-1969. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.