IDEAS home Printed from https://ideas.repec.org/a/taf/tprsxx/v55y2017i15p4229-4247.html
   My bibliography  Save this article

Pollux: a dynamic hybrid control architecture for flexible job shop systems

Author

Listed:
  • Jose-Fernando Jimenez
  • Abdelghani Bekrar
  • Gabriel Zambrano-Rey
  • Damien Trentesaux
  • Paulo Leitão

Abstract

Nowadays, manufacturing control systems can respond more effectively to exigent market requirements and real-time demands. Indeed, they take advantage of changing their structural and behavioural arrangements to tailor the control solution from a diverse set of feasible configurations. However, the challenge of this approach is to determine efficient mechanisms that dynamically optimise the configuration between different architectures. This paper presents a dynamic hybrid control architecture that integrates a switching mechanism to control changes at both structural and behavioural level. The switching mechanism is based on a genetic algorithm and strives to find the most suitable operating mode of the architecture with regard to optimality and reactivity. The proposed approach was tested in a real flexible job shop to demonstrate the applicability and efficiency of including an optimisation algorithm in the switching process of a dynamic hybrid control architecture.

Suggested Citation

  • Jose-Fernando Jimenez & Abdelghani Bekrar & Gabriel Zambrano-Rey & Damien Trentesaux & Paulo Leitão, 2017. "Pollux: a dynamic hybrid control architecture for flexible job shop systems," International Journal of Production Research, Taylor & Francis Journals, vol. 55(15), pages 4229-4247, August.
  • Handle: RePEc:taf:tprsxx:v:55:y:2017:i:15:p:4229-4247
    DOI: 10.1080/00207543.2016.1218087
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207543.2016.1218087
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207543.2016.1218087?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jose-Fernando Jimenez & Abdelghani Bekrar & Damien Trentesaux & Paulo Leitão, 2016. "A switching mechanism framework for optimal coupling of predictive scheduling and reactive control in manufacturing hybrid control architectures," International Journal of Production Research, Taylor & Francis Journals, vol. 54(23), pages 7027-7042, December.
    2. Böhnlein, Dominik & Schweiger, Katharina & Tuma, Axel, 2011. "Multi-agent-based transport planning in the newspaper industry," International Journal of Production Economics, Elsevier, vol. 131(1), pages 146-157, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Edgar Chacón & Luis Alberto Cruz Salazar & Juan Cardillo & Yenny Alexandra Paredes Astudillo, 2021. "A control architecture for continuous production processes based on industry 4.0: water supply systems application," Journal of Intelligent Manufacturing, Springer, vol. 32(7), pages 2061-2081, October.
    2. William Derigent & Olivier Cardin & Damien Trentesaux, 2021. "Industry 4.0: contributions of holonic manufacturing control architectures and future challenges," Journal of Intelligent Manufacturing, Springer, vol. 32(7), pages 1797-1818, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jose-Fernando Jimenez & Abdelghani Bekrar & Damien Trentesaux & Paulo Leitão, 2016. "A switching mechanism framework for optimal coupling of predictive scheduling and reactive control in manufacturing hybrid control architectures," International Journal of Production Research, Taylor & Francis Journals, vol. 54(23), pages 7027-7042, December.
    2. Olivier Cardin & Damien Trentesaux & André Thomas & Pierre Castagna & Thierry Berger & Hind Bril El-Haouzi, 2017. "Coupling predictive scheduling and reactive control in manufacturing hybrid control architectures: state of the art and future challenges," Journal of Intelligent Manufacturing, Springer, vol. 28(7), pages 1503-1517, October.
    3. Li, Xingyu & Epureanu, Bogdan I., 2020. "An agent-based approach to optimizing modular vehicle fleet operation," International Journal of Production Economics, Elsevier, vol. 228(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tprsxx:v:55:y:2017:i:15:p:4229-4247. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TPRS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.