IDEAS home Printed from https://ideas.repec.org/a/spr/topjnl/v31y2023i2d10.1007_s11750-022-00638-0.html
   My bibliography  Save this article

The robust multi-plant capacitated lot-sizing problem

Author

Listed:
  • Aura Jalal

    (Federal University of São Carlos)

  • Aldair Alvarez

    (HEC Montréal and GERAD)

  • Cesar Alvarez-Cruz

    (Federal University of São Carlos)

  • Jonathan La Vega

    (SimpliRoute)

  • Alfredo Moreno

    (HEC Montréal and GERAD
    Universidad Pontificia Bolivariana)

Abstract

In this paper, we study the robust multi-plant capacitated lot-sizing problem with uncertain demands, processing and setup times. This problem consists of a production system with more than one production plant, in which each plant can produce items to meet its demand or transfer items to other plants. The objective is to determine a minimum-cost production and transfer plan considering the compromise between production, inventory, and transfer costs. Using a static robust optimization approach, we propose two different robust mixed-integer programming formulations for the problem. The first formulation applies the standard duality technique to the constraints involving uncertain parameters while the second applies the duality technique only to the time constraints and introduces new parameters, accumulating the worst-case demand realizations, to the inventory balance constraints. This second formulation has the advantage of resulting from a more intuitive and straightforward approach. We perform extensive computational experiments to compare the performance of the formulations and to assess the effect of different budgets of uncertainty on the solutions. Moreover, we observe that demand, processing and setup times have different impacts when taking uncertainty into account.

Suggested Citation

  • Aura Jalal & Aldair Alvarez & Cesar Alvarez-Cruz & Jonathan La Vega & Alfredo Moreno, 2023. "The robust multi-plant capacitated lot-sizing problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(2), pages 302-330, July.
  • Handle: RePEc:spr:topjnl:v:31:y:2023:i:2:d:10.1007_s11750-022-00638-0
    DOI: 10.1007/s11750-022-00638-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11750-022-00638-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11750-022-00638-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jonathan De La Vega & Pedro Munari & Reinaldo Morabito, 2019. "Robust optimization for the vehicle routing problem with multiple deliverymen," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(4), pages 905-936, December.
    2. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    3. Alvarez, Aldair & Miranda, Pedro & Rohmer, S.U.K., 2022. "Production routing for perishable products," Omega, Elsevier, vol. 111(C).
    4. Pedro L. Miranda & Reinaldo Morabito & Deisemara Ferreira, 2018. "Optimization model for a production, inventory, distribution and routing problem in small furniture companies," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 30-67, April.
    5. Julian Englberger & Frank Herrmann & Michael Manitz, 2016. "Two-stage stochastic master production scheduling under demand uncertainty in a rolling planning environment," International Journal of Production Research, Taylor & Francis Journals, vol. 54(20), pages 6192-6215, October.
    6. Dimitris Bertsimas & Aurélie Thiele, 2006. "A Robust Optimization Approach to Inventory Theory," Operations Research, INFORMS, vol. 54(1), pages 150-168, February.
    7. Stefano Coniglio & Arie M. C. A. Koster & Nils Spiekermann, 2018. "Lot sizing with storage losses under demand uncertainty," Journal of Combinatorial Optimization, Springer, vol. 36(3), pages 763-788, October.
    8. Maryam Darvish & Homero Larrain & Leandro C. Coelho, 2016. "A dynamic multi-plant lot-sizing and distribution problem," International Journal of Production Research, Taylor & Francis Journals, vol. 54(22), pages 6707-6717, November.
    9. A. L. Soyster, 1973. "Technical Note—Convex Programming with Set-Inclusive Constraints and Applications to Inexact Linear Programming," Operations Research, INFORMS, vol. 21(5), pages 1154-1157, October.
    10. Gorissen, Bram L. & Yanıkoğlu, İhsan & den Hertog, Dick, 2015. "A practical guide to robust optimization," Omega, Elsevier, vol. 53(C), pages 124-137.
    11. Nascimento, Mariá C.V. & Resende, Mauricio G.C. & Toledo, Franklina M.B., 2010. "GRASP heuristic with path-relinking for the multi-plant capacitated lot sizing problem," European Journal of Operational Research, Elsevier, vol. 200(3), pages 747-754, February.
    12. Mirzapour Al-e-hashem, S.M.J. & Malekly, H. & Aryanezhad, M.B., 2011. "A multi-objective robust optimization model for multi-product multi-site aggregate production planning in a supply chain under uncertainty," International Journal of Production Economics, Elsevier, vol. 134(1), pages 28-42, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antonio G. Martín & Manuel Díaz-Madroñero & Josefa Mula, 2020. "Master production schedule using robust optimization approaches in an automobile second-tier supplier," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 143-166, March.
    2. Shiva Zokaee & Armin Jabbarzadeh & Behnam Fahimnia & Seyed Jafar Sadjadi, 2017. "Robust supply chain network design: an optimization model with real world application," Annals of Operations Research, Springer, vol. 257(1), pages 15-44, October.
    3. Almaraj, Ismail I. & Trafalis, Theodore B., 2019. "An integrated multi-echelon robust closed- loop supply chain under imperfect quality production," International Journal of Production Economics, Elsevier, vol. 218(C), pages 212-227.
    4. Jonathan De La Vega & Alfredo Moreno & Reinaldo Morabito & Pedro Munari, 2023. "A robust optimization approach for the unrelated parallel machine scheduling problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(1), pages 31-66, April.
    5. Sarhadi, Hassan & Naoum-Sawaya, Joe & Verma, Manish, 2020. "A robust optimization approach to locating and stockpiling marine oil-spill response facilities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    6. Sun, Hao & Yang, Jun & Yang, Chao, 2019. "A robust optimization approach to multi-interval location-inventory and recharging planning for electric vehicles," Omega, Elsevier, vol. 86(C), pages 59-75.
    7. Mehdi Ansari & Juan S. Borrero & Leonardo Lozano, 2023. "Robust Minimum-Cost Flow Problems Under Multiple Ripple Effect Disruptions," INFORMS Journal on Computing, INFORMS, vol. 35(1), pages 83-103, January.
    8. Roberto Gomes de Mattos & Fabricio Oliveira & Adriana Leiras & Abdon Baptista de Paula Filho & Paulo Gonçalves, 2019. "Robust optimization of the insecticide-treated bed nets procurement and distribution planning under uncertainty for malaria prevention and control," Annals of Operations Research, Springer, vol. 283(1), pages 1045-1078, December.
    9. Wang, Tian & Deng, Shiming, 2019. "Multi-Period energy procurement policies for smart-grid communities with deferrable demand and supplementary uncertain power supplies," Omega, Elsevier, vol. 89(C), pages 212-226.
    10. Jiang, Sheng-Long & Peng, Gongzhuang & Bogle, I. David L. & Zheng, Zhong, 2022. "Two-stage robust optimization approach for flexible oxygen distribution under uncertainty in integrated iron and steel plants," Applied Energy, Elsevier, vol. 306(PB).
    11. Viktoryia Buhayenko & Dick den Hertog, 2017. "Adjustable Robust Optimisation approach to optimise discounts for multi-period supply chain coordination under demand uncertainty," International Journal of Production Research, Taylor & Francis Journals, vol. 55(22), pages 6801-6823, November.
    12. Oğuz Solyalı & Jean-François Cordeau & Gilbert Laporte, 2016. "The Impact of Modeling on Robust Inventory Management Under Demand Uncertainty," Management Science, INFORMS, vol. 62(4), pages 1188-1201, April.
    13. Zhi Chen & Melvyn Sim & Peng Xiong, 2020. "Robust Stochastic Optimization Made Easy with RSOME," Management Science, INFORMS, vol. 66(8), pages 3329-3339, August.
    14. Juan Carlos Espinoza Garcia & Laurent Alfandari, 2018. "Robust location of new housing developments using a choice model," Annals of Operations Research, Springer, vol. 271(2), pages 527-550, December.
    15. Han, Bing & Zhang, Ying & Wang, Song & Park, Yongshin, 2023. "The efficient and stable planning for interrupted supply chain with dual‐sourcing strategy: a robust optimization approach considering decision maker's risk attitude," Omega, Elsevier, vol. 115(C).
    16. Jiankun Sun & Jan A. Van Mieghem, 2019. "Robust Dual Sourcing Inventory Management: Optimality of Capped Dual Index Policies and Smoothing," Manufacturing & Service Operations Management, INFORMS, vol. 21(4), pages 912-931, October.
    17. Seong-Cheol Kang & Theodora Brisimi & Ioannis Paschalidis, 2015. "Distribution-dependent robust linear optimization with applications to inventory control," Annals of Operations Research, Springer, vol. 231(1), pages 229-263, August.
    18. Moret, Stefano & Babonneau, Frédéric & Bierlaire, Michel & Maréchal, François, 2020. "Overcapacity in European power systems: Analysis and robust optimization approach," Applied Energy, Elsevier, vol. 259(C).
    19. Claire Nicolas & Stéphane Tchung-Ming & Emmanuel Hache, 2016. "Energy transition in transportation under cost uncertainty, an assessment based on robust optimization," Working Papers hal-02475943, HAL.
    20. Perraudat, Antoine & Dauzère-Pérès, Stéphane & Vialletelle, Philippe, 2022. "Robust tactical qualification decisions in flexible manufacturing systems," Omega, Elsevier, vol. 106(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:topjnl:v:31:y:2023:i:2:d:10.1007_s11750-022-00638-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.