IDEAS home Printed from https://ideas.repec.org/a/spr/jknowl/v15y2024i3d10.1007_s13132-023-01602-4.html
   My bibliography  Save this article

Innovative Insights into Knowledge-Driven Financial Distress Prediction: a Comprehensive XAI Approach

Author

Listed:
  • Mengting Fan

    (Guangdong University of Technology)

  • Zan Mo

    (Guangdong University of Technology)

  • Qizhi Zhao

    (Guangdong University of Technology)

  • Zhouyang Liang

    (Guangdong University of Technology)

Abstract

In an era where the knowledge economy plays a pivotal role, corporate financial distress poses substantial risks to various external stakeholders. Traditional financial distress prediction models often fall short in accuracy and transparency. Hence, we introduce a groundbreaking approach that leverages the power of ensemble learning models while addressing the challenges of class imbalance. We propose a comprehensive framework that enhances predictive performance and caters to external users’ needs for interpretability. We delve into the world of explainable artificial intelligence (XAI) by incorporating techniques such as partial dependence plots (PDP), individual conditional expectations (ICE), and Shapley additive explanations (SHAP). These techniques provide global and local interpretations that help businesses, financial institutions, and regulators make informed decisions. We conduct empirical experiments using financial data from Polish companies, which show that the GBoost model with random oversampling (ROS) performs the best and demonstrates the validity of our approach. Local PDP interpretations help to identify key financial indicators that contribute to a firm’s financial distress, and ICE interpretations are exploited to provide strategies for improvement. Moreover, in terms of global interpretation, SHAP’s feature importance ranking and feature interaction results are consistent with the knowledge of financial experts, thus increasing the credibility of the black-box model. While our study presents significant contributions to financial distress prediction and XAI, it acknowledges certain limitations. Future research can explore heterogeneous ensemble predictors and extend this framework to various domains beyond bankruptcy prediction. Our research underscores the importance of knowledge-driven innovation in today’s dynamic economy.

Suggested Citation

  • Mengting Fan & Zan Mo & Qizhi Zhao & Zhouyang Liang, 2024. "Innovative Insights into Knowledge-Driven Financial Distress Prediction: a Comprehensive XAI Approach," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(3), pages 12554-12595, September.
  • Handle: RePEc:spr:jknowl:v:15:y:2024:i:3:d:10.1007_s13132-023-01602-4
    DOI: 10.1007/s13132-023-01602-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13132-023-01602-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13132-023-01602-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Matthew Smith & Francisco Alvarez, 2022. "Predicting Firm-Level Bankruptcy in the Spanish Economy Using Extreme Gradient Boosting," Computational Economics, Springer;Society for Computational Economics, vol. 59(1), pages 263-295, January.
    2. Ioannis E. Nikolaou, 2019. "A Framework to Explicate the Relationship Between CSER and Financial Performance: an Intellectual Capital-Based Approach and Knowledge-Based View of Firm," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 10(4), pages 1427-1446, December.
    3. Marek Durica & Jaroslav Frnda & Lucia Svabova, 2019. "Decision tree based model of business failure prediction for Polish companies," Oeconomia Copernicana, Institute of Economic Research, vol. 10(3), pages 453-469, September.
    4. Xiaobo Tang & Shixuan Li & Mingliang Tan & Wenxuan Shi, 2020. "Incorporating textual and management factors into financial distress prediction: A comparative study of machine learning methods," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(5), pages 769-787, August.
    5. Nagy K. Hanna, 2020. "Assessing the digital economy: aims, frameworks, pilots, results, and lessons," Journal of Innovation and Entrepreneurship, Springer, vol. 9(1), pages 1-16, December.
    6. Arun Rai, 2020. "Explainable AI: from black box to glass box," Journal of the Academy of Marketing Science, Springer, vol. 48(1), pages 137-141, January.
    7. du Jardin, Philippe & Séverin, Eric, 2012. "Forecasting financial failure using a Kohonen map: A comparative study to improve model stability over time," European Journal of Operational Research, Elsevier, vol. 221(2), pages 378-396.
    8. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    9. Zanin, Luca, 2020. "Combining multiple probability predictions in the presence of class imbalance to discriminate between potential bad and good borrowers in the peer-to-peer lending market," Journal of Behavioral and Experimental Finance, Elsevier, vol. 25(C).
    10. Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
    11. Sami Ben Jabeur & Amir Sadaaoui & Asma Sghaier & Riadh Aloui, 2020. "Machine learning models and cost-sensitive decision trees for bond rating prediction," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 71(8), pages 1161-1179, August.
    12. P. Du Jardin & E. Séverin, 2012. "Forecasting financial failure using a Kohonen map: a comparative study to improve bankruptcy model over time," Post-Print hal-00801853, HAL.
    13. Stewart Jones, 2017. "Corporate bankruptcy prediction: a high dimensional analysis," Review of Accounting Studies, Springer, vol. 22(3), pages 1366-1422, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sami Ben Jabeur & Nicolae Stef & Pedro Carmona, 2023. "Bankruptcy Prediction using the XGBoost Algorithm and Variable Importance Feature Engineering," Computational Economics, Springer;Society for Computational Economics, vol. 61(2), pages 715-741, February.
    2. Jabeur, Sami Ben & Gharib, Cheima & Mefteh-Wali, Salma & Arfi, Wissal Ben, 2021. "CatBoost model and artificial intelligence techniques for corporate failure prediction," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    3. Ben Jabeur, Sami & Serret, Vanessa, 2023. "Bankruptcy prediction using fuzzy convolutional neural networks," Research in International Business and Finance, Elsevier, vol. 64(C).
    4. David Veganzones, 2022. "Corporate failure prediction using threshold‐based models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(5), pages 956-979, August.
    5. du Jardin, Philippe, 2015. "Bankruptcy prediction using terminal failure processes," European Journal of Operational Research, Elsevier, vol. 242(1), pages 286-303.
    6. Youssef Zizi & Amine Jamali-Alaoui & Badreddine El Goumi & Mohamed Oudgou & Abdeslam El Moudden, 2021. "An Optimal Model of Financial Distress Prediction: A Comparative Study between Neural Networks and Logistic Regression," Risks, MDPI, vol. 9(11), pages 1-24, November.
    7. Geng, Ruibin & Bose, Indranil & Chen, Xi, 2015. "Prediction of financial distress: An empirical study of listed Chinese companies using data mining," European Journal of Operational Research, Elsevier, vol. 241(1), pages 236-247.
    8. Ángel Beade & Manuel Rodríguez & José Santos, 2024. "Business failure prediction models with high and stable predictive power over time using genetic programming," Operational Research, Springer, vol. 24(3), pages 1-41, September.
    9. Sami Ben Jabeur & Youssef Fahmi, 2018. "Forecasting financial distress for French firms: a comparative study," Empirical Economics, Springer, vol. 54(3), pages 1173-1186, May.
    10. Mohammad Mahdi Mousavi & Jamal Ouenniche & Kaoru Tone, 2023. "A dynamic performance evaluation of distress prediction models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 756-784, July.
    11. Zeineb Affes & Rania Hentati-Kaffel, 2019. "Predicting US Banks Bankruptcy: Logit Versus Canonical Discriminant Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 54(1), pages 199-244, June.
    12. Zhao, Qi & Xu, Weijun & Ji, Yucheng, 2023. "Predicting financial distress of Chinese listed companies using machine learning: To what extent does textual disclosure matter?," International Review of Financial Analysis, Elsevier, vol. 89(C).
    13. Noora Alzayed & Rasol Eskandari & Hassan Yazdifar, 2023. "Bank failure prediction: corporate governance and financial indicators," Review of Quantitative Finance and Accounting, Springer, vol. 61(2), pages 601-631, August.
    14. Ruize Gao & Shaoze Cui & Yu Wang & Wei Xu, 2025. "Predicting financial distress in high-dimensional imbalanced datasets: a multi-heterogeneous self-paced ensemble learning framework," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 11(1), pages 1-34, December.
    15. Elena Gregova & Katarina Valaskova & Peter Adamko & Milos Tumpach & Jaroslav Jaros, 2020. "Predicting Financial Distress of Slovak Enterprises: Comparison of Selected Traditional and Learning Algorithms Methods," Sustainability, MDPI, vol. 12(10), pages 1-17, May.
    16. Kamesh Korangi & Christophe Mues & Cristi'an Bravo, 2021. "A transformer-based model for default prediction in mid-cap corporate markets," Papers 2111.09902, arXiv.org, revised Apr 2023.
    17. Yue Qiu & Jiabei He & Zhensong Chen & Yinhong Yao & Yi Qu, 2024. "A novel semisupervised learning method with textual information for financial distress prediction," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(7), pages 2478-2494, November.
    18. Korangi, Kamesh & Mues, Christophe & Bravo, Cristián, 2023. "A transformer-based model for default prediction in mid-cap corporate markets," European Journal of Operational Research, Elsevier, vol. 308(1), pages 306-320.
    19. Ying Zhou & Xia Lin & Guotai Chi & Peng Jin & Mengtong Li, 2024. "EWT‐SMOTE to improve default prediction performance in imbalanced data: Analysis of Chinese data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(3), pages 615-643, April.
    20. Lohmann, Christian & Möllenhoff, Steffen, 2023. "How do bankruptcy risk estimations change in time? Empirical evidence from listed US companies," Finance Research Letters, Elsevier, vol. 58(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jknowl:v:15:y:2024:i:3:d:10.1007_s13132-023-01602-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.