IDEAS home Printed from https://ideas.repec.org/a/taf/specan/v8y2013i3p271-292.html
   My bibliography  Save this article

On the I -super-2( q ) Test Statistic for Spatial Dependence: Finite Sample Standardization and Properties

Author

Listed:
  • David M. Drukker
  • Ingmar R. Prucha

Abstract

One of the most widely used tests for spatial dependence is Moran's (1950) I test. The power of the test will depend on the extent to which the spatial-weights matrix employed in computing the Moran I test statistic properly specifies existing interaction links between spatial units. Empirical researchers are often unsure about the use of a particular spatial-weights matrix. In light of this Prucha (2011) introduced the I-super- 2 ( q ) test statistic. This test statistic combines quadratic forms based on several, say q, spatial-weights matrices, while at the same time allows for a proper controlling of the size of the test. In this paper, we first introduce a finite-sample standardized version of the I-super- 2 ( q ) test. We then perform a Monte Carlo study to explore the finite-sample performance of the I-super- 2 ( q ) tests. For comparison, the Monte Carlo study also reports on the finite-sample performance of Moran I tests as well as on Moran I tests performed in sequence.

Suggested Citation

  • David M. Drukker & Ingmar R. Prucha, 2013. "On the I -super-2( q ) Test Statistic for Spatial Dependence: Finite Sample Standardization and Properties," Spatial Economic Analysis, Taylor & Francis Journals, vol. 8(3), pages 271-292, September.
  • Handle: RePEc:taf:specan:v:8:y:2013:i:3:p:271-292
    DOI: 10.1080/17421772.2013.804630
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/17421772.2013.804630
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/17421772.2013.804630?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Federico Martellosio, 2012. "Testing for Spatial Autocorrelation: The Regressors that Make the Power Disappear," Econometric Reviews, Taylor & Francis Journals, vol. 31(2), pages 215-240.
    2. Kelejian, Harry H. & Prucha, Ingmar R., 2010. "Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances," Journal of Econometrics, Elsevier, vol. 157(1), pages 53-67, July.
    3. Luc Anselin & Raymond J. G. M. Florax, 1995. "Small Sample Properties of Tests for Spatial Dependence in Regression Models: Some Further Results," Advances in Spatial Science, in: Luc Anselin & Raymond J. G. M. Florax (ed.), New Directions in Spatial Econometrics, chapter 2, pages 21-74, Springer.
    4. H. Kelejian, Harry & Prucha, Ingmar R., 2001. "On the asymptotic distribution of the Moran I test statistic with applications," Journal of Econometrics, Elsevier, vol. 104(2), pages 219-257, September.
    5. Kelejian, Harry H. & Prucha, Ingmar R., 2007. "HAC estimation in a spatial framework," Journal of Econometrics, Elsevier, vol. 140(1), pages 131-154, September.
    6. Martellosio, Federico, 2008. "Testing for spatial autocorrelation: the regressors that make the power disappear," MPRA Paper 10542, University Library of Munich, Germany.
    7. Harry H. Kelejian & Dennis P. Robinson, 1995. "Spatial Correlation: A Suggested Alternative to the Autoregressive Model," Advances in Spatial Science, in: Luc Anselin & Raymond J. G. M. Florax (ed.), New Directions in Spatial Econometrics, chapter 3, pages 75-95, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luciano Lavecchia, 2015. "A note on social capital, space and growth in Europe," Temi di discussione (Economic working papers) 1017, Bank of Italy, Economic Research and International Relations Area.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pesaran, M. Hashem & Tosetti, Elisa, 2011. "Large panels with common factors and spatial correlation," Journal of Econometrics, Elsevier, vol. 161(2), pages 182-202, April.
    2. López, Fernando & Matilla-García, Mariano & Mur, Jesús & Marín, Manuel Ruiz, 2010. "A non-parametric spatial independence test using symbolic entropy," Regional Science and Urban Economics, Elsevier, vol. 40(2-3), pages 106-115, May.
    3. Francesca Rossi & Peter M. Robinson, 2020. "Higher-Order Least Squares Inference for Spatial Autoregressions," Working Papers 04/2020, University of Verona, Department of Economics.
    4. Gupta, Abhimanyu, 2019. "Estimation Of Spatial Autoregressions With Stochastic Weight Matrices," Econometric Theory, Cambridge University Press, vol. 35(2), pages 417-463, April.
    5. Liu, Shew Fan & Yang, Zhenlin, 2015. "Modified QML estimation of spatial autoregressive models with unknown heteroskedasticity and nonnormality," Regional Science and Urban Economics, Elsevier, vol. 52(C), pages 50-70.
    6. repec:esx:essedp:772 is not listed on IDEAS
    7. Debarsy, Nicolas & Ertur, Cem, 2010. "Testing for spatial autocorrelation in a fixed effects panel data model," Regional Science and Urban Economics, Elsevier, vol. 40(6), pages 453-470, November.
    8. Rossi, Francesca & Robinson, Peter M., 2023. "Higher-order least squares inference for spatial autoregressions," Journal of Econometrics, Elsevier, vol. 232(1), pages 244-269.
    9. repec:asg:wpaper:1013 is not listed on IDEAS
    10. Irani Arraiz & David M. Drukker & Harry H. Kelejian & Ingmar R. Prucha, 2010. "A Spatial Cliff‐Ord‐Type Model With Heteroskedastic Innovations: Small And Large Sample Results," Journal of Regional Science, Wiley Blackwell, vol. 50(2), pages 592-614, May.
    11. Luc Anselin, 2010. "Thirty years of spatial econometrics," Papers in Regional Science, Wiley Blackwell, vol. 89(1), pages 3-25, March.
    12. Zhenlin Yang, 2013. "LM Tests of Spatial Dependence Based on Bootstrap Critical Values," Working Papers 03-2013, Singapore Management University, School of Economics.
    13. Fei Jin & Lung-fei Lee, 2020. "Asymptotic properties of a spatial autoregressive stochastic frontier model," Journal of Spatial Econometrics, Springer, vol. 1(1), pages 1-40, December.
    14. Robinson, Peter M. & Rossi, Francesca, 2015. "Refined Tests For Spatial Correlation," Econometric Theory, Cambridge University Press, vol. 31(6), pages 1249-1280, December.
    15. Moscone, F. & Tosetti, E., 2011. "GMM estimation of spatial panels with fixed effects and unknown heteroskedasticity," Regional Science and Urban Economics, Elsevier, vol. 41(5), pages 487-497, September.
    16. Guowei Cui & Vasilis Sarafidis & Takashi Yamagata, 2023. "IV estimation of spatial dynamic panels with interactive effects: large sample theory and an application on bank attitude towards risk," The Econometrics Journal, Royal Economic Society, vol. 26(2), pages 124-146.
    17. Raymond J. G. M. Florax & Arno J. Van der Vlist, 2003. "Spatial Econometric Data Analysis: Moving Beyond Traditional Models," International Regional Science Review, , vol. 26(3), pages 223-243, July.
    18. David M. Drukker & Peter Egger & Ingmar R. Prucha, 2013. "On Two-Step Estimation of a Spatial Autoregressive Model with Autoregressive Disturbances and Endogenous Regressors," Econometric Reviews, Taylor & Francis Journals, vol. 32(5-6), pages 686-733, August.
    19. Panagiotis Artelaris & George Petrakos, 2016. "Intraregional Spatial Inequalities and Regional Income Level in the European Union," International Regional Science Review, , vol. 39(3), pages 291-317, July.
    20. Jungyoon Lee & Peter C.B. Phillips & Francesca Rossi, 2020. "Consistent Misspecification Testing in Spatial Autoregressive Models," Cowles Foundation Discussion Papers 2256, Cowles Foundation for Research in Economics, Yale University.
    21. Yang, Zhenlin, 2015. "LM tests of spatial dependence based on bootstrap critical values," Journal of Econometrics, Elsevier, vol. 185(1), pages 33-59.
    22. Emanuela Marrocu & Raffaele Paci & Stefano Usai, 2013. "Productivity Growth In The Old And New Europe: The Role Of Agglomeration Externalities," Journal of Regional Science, Wiley Blackwell, vol. 53(3), pages 418-442, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:specan:v:8:y:2013:i:3:p:271-292. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RSEA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.