IDEAS home Printed from https://ideas.repec.org/a/taf/raagxx/v104y2014i6p1134-1156.html
   My bibliography  Save this article

Spatial Clustering Overview and Comparison: Accuracy, Sensitivity, and Computational Expense

Author

Listed:
  • Tony H. Grubesic
  • Ran Wei
  • Alan T. Murray

Abstract

Cluster analysis continues to be an important exploratory technique in scientific inquiry. It is used widely in geography, public health, criminology, ecology, and many other fields. Spatial cluster detection is driven by geographic information corresponding to the location of activities, requiring appropriate and meaningful treatment of space and spatial relationships combined with observed attributes of location and events. To date, this has meant utilizing dedicated measures and techniques to structure and account for distance, neighbors, contiguity, irregular geographic morphology, and so on. Unfortunately, all spatial clustering approaches, regardless of their theoretical underpinning, statistical foundation, or mathematical specification, have limitations in accuracy, sensitivity, and the computational effort required for identifying clusters. As a result, a major challenge in practice is determining which technique(s) will provide the most meaningful insights for a particular substantive issue or planning context. The purpose of this article is to provide an overview and evaluation of spatial clustering techniques, identifying the strengths and weaknesses of the most widely applied approaches. Results suggest that performance varies significantly in terms of accuracy, sensitivity, and computational expense. This is noteworthy because the misidentification of clusters, whether false positives or false negatives, has the potential to bias not only hypothesis formulation but also pragmatic facets of policy, process, and planning efforts within a region.

Suggested Citation

  • Tony H. Grubesic & Ran Wei & Alan T. Murray, 2014. "Spatial Clustering Overview and Comparison: Accuracy, Sensitivity, and Computational Expense," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 104(6), pages 1134-1156, November.
  • Handle: RePEc:taf:raagxx:v:104:y:2014:i:6:p:1134-1156
    DOI: 10.1080/00045608.2014.958389
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00045608.2014.958389
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00045608.2014.958389?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lídia Montero & Lucía Mejía-Dorantes & Jaume Barceló, 2024. "Land Use, Travel Patterns and Gender in Barcelona: A Sequence Analysis Approach," Sustainability, MDPI, vol. 16(20), pages 1-26, October.
    2. Seungwoo Han, 2022. "Spatial stratification and socio-spatial inequalities: the case of Seoul and Busan in South Korea," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-14, December.
    3. Seungwoo Han, 2023. "Welfare regimes in Asia: convergent or divergent?," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-14, December.
    4. Shi, Hui & Su, Rongxiang & Xiao, Jingyi & Goulias, Konstadinos G., 2022. "Spatiotemporal analysis of activity-travel fragmentation based on spatial clustering and sequence analysis," Journal of Transport Geography, Elsevier, vol. 102(C).
    5. Zihan Tong & Zhenxing Kong & Xiao Jia & Jingjing Yu & Tingting Sun & Yimin Zhang, 2023. "Spatial Heterogeneity and Regional Clustering of Factors Influencing Chinese Adolescents’ Physical Fitness," IJERPH, MDPI, vol. 20(5), pages 1-18, February.
    6. Ben Beck & Meghan Winters & Trisalyn Nelson & Chris Pettit & Simone Z Leao & Meead Saberi & Jason Thompson & Sachith Seneviratne & Kerry Nice & Mark Stevenson, 2023. "Developing urban biking typologies: Quantifying the complex interactions of bicycle ridership, bicycle network and built environment characteristics," Environment and Planning B, , vol. 50(1), pages 7-23, January.
    7. Sun, Wenwen & Jin, Hongyu & Chen, Yan & Hu, Xin & Li, Zhuoran & Kidd, Akari & Liu, Chunlu, 2021. "Spatial mismatch analyses of school land in China using a spatial statistical approach," Land Use Policy, Elsevier, vol. 108(C).
    8. Gainbi Park & Zengwang Xu, 2022. "The constituent components and local indicator variables of social vulnerability index," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(1), pages 95-120, January.
    9. Sehwi Kim & Inkyung Jung, 2017. "Optimizing the maximum reported cluster size in the spatial scan statistic for ordinal data," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-15, July.
    10. Zhanjun He & Rongqi Lai & Zhipeng Wang & Huimin Liu & Min Deng, 2022. "Comparative Study of Approaches for Detecting Crime Hotspots with Considering Concentration and Shape Characteristics," IJERPH, MDPI, vol. 19(21), pages 1-16, November.
    11. Shruthi Patil & Leander Kotzur & Detlef Stolten, 2022. "Advanced Spatial and Technological Aggregation Scheme for Energy System Models," Energies, MDPI, vol. 15(24), pages 1-26, December.
    12. Jianxin Yang & Jian Gong & Wenwu Tang, 2019. "Prioritizing Spatially Aggregated Cost-Effective Sites in Natural Reserves to Mitigate Human-Induced Threats: A Case Study of the Qinghai Plateau, China," Sustainability, MDPI, vol. 11(5), pages 1-23, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:raagxx:v:104:y:2014:i:6:p:1134-1156. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/raag .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.