IDEAS home Printed from https://ideas.repec.org/a/eee/ecmode/v38y2014icp33-44.html
   My bibliography  Save this article

A reflection principle for a random walk with implications for volatility estimation using extreme values of asset prices

Author

Listed:
  • Kumar, Dilip
  • Maheswaran, S.

Abstract

In this paper, we derive a reflection principle for a random walk with the symmetric double exponential distribution. This allows us to come up with the closed form solution for the joint probability of the running maximum and the terminal value of the random walk. Based on this new theoretical result, we propose an extreme value estimator for the variance of the random walk that is not just approximately unbiased but exactly so. In simulations, we find that this estimator continues to be unbiased even when intraday mean reversion is present, as captured by the Binomial Markov Random Walk model. On the empirical side, we find that this estimator works well in a variety of global stock indices, including the S&P 500 Index, in the sense of being unbiased relative to the “usual” estimator, i.e., the sample variance of the daily returns.

Suggested Citation

  • Kumar, Dilip & Maheswaran, S., 2014. "A reflection principle for a random walk with implications for volatility estimation using extreme values of asset prices," Economic Modelling, Elsevier, vol. 38(C), pages 33-44.
  • Handle: RePEc:eee:ecmode:v:38:y:2014:i:c:p:33-44
    DOI: 10.1016/j.econmod.2013.11.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264999313005488
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econmod.2013.11.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. repec:bla:econom:v:66:y:1999:i:262:p:157-79 is not listed on IDEAS
    2. Andrew W. Lo, A. Craig MacKinlay, 1988. "Stock Market Prices do not Follow Random Walks: Evidence from a Simple Specification Test," The Review of Financial Studies, Society for Financial Studies, vol. 1(1), pages 41-66.
    3. Garman, Mark B & Klass, Michael J, 1980. "On the Estimation of Security Price Volatilities from Historical Data," The Journal of Business, University of Chicago Press, vol. 53(1), pages 67-78, January.
    4. Enrique Ter Horst & Abel Rodriguez & Henryk Gzyl & German Molina, 2012. "Stochastic volatility models including open, close, high and low prices," Quantitative Finance, Taylor & Francis Journals, vol. 12(2), pages 199-212, May.
    5. L. C. G. Rogers & Fanyin Zhou, 2008. "Estimating correlation from high, low, opening and closing prices," Papers 0804.0162, arXiv.org.
    6. Cochrane, John H, 1988. "How Big Is the Random Walk in GNP?," Journal of Political Economy, University of Chicago Press, vol. 96(5), pages 893-920, October.
    7. S. G. Kou & Hui Wang, 2004. "Option Pricing Under a Double Exponential Jump Diffusion Model," Management Science, INFORMS, vol. 50(9), pages 1178-1192, September.
    8. Beckers, Stan, 1983. "Variances of Security Price Returns Based on High, Low, and Closing Prices," The Journal of Business, University of Chicago Press, vol. 56(1), pages 97-112, January.
    9. Parkinson, Michael, 1980. "The Extreme Value Method for Estimating the Variance of the Rate of Return," The Journal of Business, University of Chicago Press, vol. 53(1), pages 61-65, January.
    10. Ball, Clifford A & Torous, Walter N, 1984. "The Maximum Likelihood Estimation of Security Price Volatility: Theory, Evidence, and Application to Option Pricing," The Journal of Business, University of Chicago Press, vol. 57(1), pages 97-112, January.
    11. Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
    12. Kunitomo, Naoto, 1992. "Improving the Parkinson Method of Estimating Security Price Volatilities," The Journal of Business, University of Chicago Press, vol. 65(2), pages 295-302, April.
    13. Maheswaran, S. & Kumar, Dilip, 2013. "An automatic bias correction procedure for volatility estimation using extreme values of asset prices," Economic Modelling, Elsevier, vol. 33(C), pages 701-712.
    14. Malik Magdon-Ismail & Amir Atiya, 2003. "A maximum likelihood approach to volatility estimation for a Brownian motion using high, low and close price data," Quantitative Finance, Taylor & Francis Journals, vol. 3(5), pages 376-384.
    15. Clive W. J. Granger, 2002. "Some comments on risk," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 447-456.
    16. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zargar, Faisal Nazir & Kumar, Dilip, 2020. "Modeling unbiased extreme value volatility estimator in presence of heterogeneity and jumps: A study with economic significance analysis," International Review of Economics & Finance, Elsevier, vol. 67(C), pages 25-41.
    2. Dilip Kumar, 2020. "Value-at-Risk in the Presence of Structural Breaks Using Unbiased Extreme Value Volatility Estimator," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 18(3), pages 587-610, September.
    3. Kumar, Dilip & Maheswaran, S., 2014. "Modeling and forecasting the additive bias corrected extreme value volatility estimator," International Review of Financial Analysis, Elsevier, vol. 34(C), pages 166-176.
    4. Muneer Shaik & S. Maheswaran, 2020. "A new unbiased additive robust volatility estimation using extreme values of asset prices," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 34(3), pages 313-347, September.
    5. Dilip Kumar, 2016. "Estimating and forecasting value-at-risk using the unbiased extreme value volatility estimator," Proceedings of Economics and Finance Conferences 3205528, International Institute of Social and Economic Sciences.
    6. Muneer Shaik & S. Maheswaran, 2019. "Robust Volatility Estimation with and Without the Drift Parameter," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 17(1), pages 57-91, March.
    7. Zargar, Faisal Nazir & Kumar, Dilip, 2020. "Heterogeneous market hypothesis approach for modeling unbiased extreme value volatility estimator in presence of leverage effect: An individual stock level study with economic significance analysis," The Quarterly Review of Economics and Finance, Elsevier, vol. 77(C), pages 271-285.
    8. Dilip Kumar, 2019. "Structural Breaks in Volatility Transmission from Developed Markets to Major Asian Emerging Markets," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 18(2), pages 172-209, August.
    9. Vortelinos, Dimitrios I., 2015. "The Greek equity market in European equity portfolios," Economic Modelling, Elsevier, vol. 49(C), pages 144-153.
    10. Dilip Kumar, 2018. "Modeling and Forecasting Unbiased Extreme Value Volatility Estimator in Presence of Leverage Effect," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 16(2), pages 313-335, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kumar, Dilip & Maheswaran, S., 2014. "Modeling and forecasting the additive bias corrected extreme value volatility estimator," International Review of Financial Analysis, Elsevier, vol. 34(C), pages 166-176.
    2. Muneer Shaik & S. Maheswaran, 2019. "Robust Volatility Estimation with and Without the Drift Parameter," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 17(1), pages 57-91, March.
    3. Maheswaran, S. & Kumar, Dilip, 2013. "An automatic bias correction procedure for volatility estimation using extreme values of asset prices," Economic Modelling, Elsevier, vol. 33(C), pages 701-712.
    4. Dilip Kumar, 2020. "Value-at-Risk in the Presence of Structural Breaks Using Unbiased Extreme Value Volatility Estimator," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 18(3), pages 587-610, September.
    5. Parthajit Kayal & S. Maheswaran, 2017. "Is USD-INR Really an Excessively Volatile Currency Pair?," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 15(2), pages 329-342, June.
    6. Dilip Kumar, 2018. "Modeling and Forecasting Unbiased Extreme Value Volatility Estimator in Presence of Leverage Effect," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 16(2), pages 313-335, June.
    7. Dilip Kumar, 2016. "Estimating and forecasting value-at-risk using the unbiased extreme value volatility estimator," Proceedings of Economics and Finance Conferences 3205528, International Institute of Social and Economic Sciences.
    8. Lakshmi Padmakumari & S Maheswaran, 2016. "A Regression Based Approach to Capturing the Level Dependence in the Volatility of Stock Returns," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 6(12), pages 706-718, December.
    9. Lakshmi Padmakumari & S. Maheswaran, 2018. "Covariance estimation using random permutations," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(01), pages 1-21, March.
    10. Degiannakis, Stavros & Xekalaki, Evdokia, 2004. "Autoregressive Conditional Heteroskedasticity (ARCH) Models: A Review," MPRA Paper 80487, University Library of Munich, Germany.
    11. Muneer Shaik & S. Maheswaran, 2016. "Modelling the Paradox in Stock Markets by Variance Ratio Volatility Estimator that Utilises Extreme Values of Asset Prices," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 15(3), pages 333-361, December.
    12. Kumar, Dilip, 2015. "Sudden changes in extreme value volatility estimator: Modeling and forecasting with economic significance analysis," Economic Modelling, Elsevier, vol. 49(C), pages 354-371.
    13. Christensen, Kim & Podolski, Mark, 2005. "Asymptotic theory for range-based estimation of integrated variance of a continuous semi-martingale," Technical Reports 2005,18, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    14. Padmakumari, Lakshmi & S., Maheswaran, 2017. "A new statistic to capture the level dependence in stock price volatility," The Quarterly Review of Economics and Finance, Elsevier, vol. 65(C), pages 355-362.
    15. Igor Kliakhandler, 2007. "Execution edge of pit traders and intraday price ranges of soft commodities," Applied Financial Economics, Taylor & Francis Journals, vol. 17(5), pages 343-350.
    16. Enrique Ter Horst & Abel Rodriguez & Henryk Gzyl & German Molina, 2012. "Stochastic volatility models including open, close, high and low prices," Quantitative Finance, Taylor & Francis Journals, vol. 12(2), pages 199-212, May.
    17. Michael W. Brandt & Francis X. Diebold, 2006. "A No-Arbitrage Approach to Range-Based Estimation of Return Covariances and Correlations," The Journal of Business, University of Chicago Press, vol. 79(1), pages 61-74, January.
    18. Sassan Alizadeh & Michael W. Brandt & Francis X. Diebold, 2002. "Range‐Based Estimation of Stochastic Volatility Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1047-1091, June.
    19. Muneer Shaik & S. Maheswaran, 2020. "A new unbiased additive robust volatility estimation using extreme values of asset prices," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 34(3), pages 313-347, September.
    20. Yan-Leung Cheung & Yin-Wong Cheung & Alan T. K. Wan, 2009. "A high-low model of daily stock price ranges," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(2), pages 103-119.

    More about this item

    Keywords

    Volatility estimation; Bias correction; Random walk effect; Binomial Markov Random Walk (BMRW) model;
    All these keywords.

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecmode:v:38:y:2014:i:c:p:33-44. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30411 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.