IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v17y2017i3p471-478.html
   My bibliography  Save this article

Risk based capital for guaranteed minimum withdrawal benefit

Author

Listed:
  • Runhuan Feng
  • Jan Vecer

Abstract

The guaranteed minimum withdrawal benefit (GMWB), which is sold as a rider to variable annuity contracts, guarantees the return of total purchase payment regardless of the performance of the underlying investment funds. The valuation of GMWB has been extensively covered in the previous literature, but a more challenging problem is the computation of the risk based capital for risk management and regulatory reasons. One needs to find the tail distribution of the profit–loss function, which differs from its expected payoff required for pricing the GMWB contract. GMWB has embedded two option-like features: Management fees are proportional to the current value of the policyholder’s account which results in an average price of the account. Thus the contract resembles an Asian option. However, the fees are charged only up to the time of the account hitting zero which resembles a barrier option payoff. Thus the GMWB is mathematically more complicated than Asian or barrier options traded on the financial markets. To the authors’ best knowledge, this is the first paper in the literature to formulate and analyse profit–loss distribution using PDE methods of such a product with intricate option-like features. Our approach is much more efficient than the current market practice of rather intensive and expensive Monte Carlo simulations due to the lack of samples for extreme cases.

Suggested Citation

  • Runhuan Feng & Jan Vecer, 2017. "Risk based capital for guaranteed minimum withdrawal benefit," Quantitative Finance, Taylor & Francis Journals, vol. 17(3), pages 471-478, March.
  • Handle: RePEc:taf:quantf:v:17:y:2017:i:3:p:471-478
    DOI: 10.1080/14697688.2016.1189087
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2016.1189087
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2016.1189087?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, H. & Milevsky, M.A. & Salisbury, T.S., 2014. "Optimal initiation of a GLWB in a variable annuity: No Arbitrage approach," Insurance: Mathematics and Economics, Elsevier, vol. 56(C), pages 102-111.
    2. Feng, Runhuan & Huang, Huaxiong, 2016. "Statutory financial reporting for variable annuity guaranteed death benefits: Market practice, mathematical modeling and computation," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 54-64.
    3. Milevsky, Moshe A. & Salisbury, Thomas S., 2006. "Financial valuation of guaranteed minimum withdrawal benefits," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 21-38, February.
    4. Huang, Yao Tung & Kwok, Yue Kuen, 2014. "Analysis of optimal dynamic withdrawal policies in withdrawal guarantee products," Journal of Economic Dynamics and Control, Elsevier, vol. 45(C), pages 19-43.
    5. Jingjiang Peng & Kwai Sun Leung & Yue Kuen Kwok, 2012. "Pricing guaranteed minimum withdrawal benefits under stochastic interest rates," Quantitative Finance, Taylor & Francis Journals, vol. 12(6), pages 933-941, October.
    6. Feng, Runhuan & Shimizu, Yasutaka, 2016. "Applications of central limit theorems for equity-linked insurance," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 138-148.
    7. Jan Vecer & Mingxin Xu, 2004. "Pricing Asian options in a semimartingale model," Quantitative Finance, Taylor & Francis Journals, vol. 4(2), pages 170-175.
    8. Forsyth, Peter & Vetzal, Kenneth, 2014. "An optimal stochastic control framework for determining the cost of hedging of variable annuities," Journal of Economic Dynamics and Control, Elsevier, vol. 44(C), pages 29-53.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feng, Runhuan & Yi, Bingji, 2019. "Quantitative modeling of risk management strategies: Stochastic reserving and hedging of variable annuity guaranteed benefits," Insurance: Mathematics and Economics, Elsevier, vol. 85(C), pages 60-73.
    2. Wentao Hu & Cuixia Chen & Yufeng Shi & Ze Chen, 2022. "A Tail Measure With Variable Risk Tolerance: Application in Dynamic Portfolio Insurance Strategy," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 831-874, June.
    3. Jin Sun & Pavel V. Shevchenko & Man Chung Fung, 2018. "The Impact of Management Fees on the Pricing of Variable Annuity Guarantees," Risks, MDPI, vol. 6(3), pages 1-20, September.
    4. Emilio Russo, 2020. "A Discrete-Time Approach to Evaluate Path-Dependent Derivatives in a Regime-Switching Risk Model," Risks, MDPI, vol. 8(1), pages 1-22, January.
    5. Michael A. Kouritzin & Anne MacKay, 2017. "VIX-linked fees for GMWBs via Explicit Solution Simulation Methods," Papers 1708.06886, arXiv.org, revised Apr 2018.
    6. Dong, Bing & Xu, Wei & Sevic, Aleksandar & Sevic, Zeljko, 2020. "Efficient willow tree method for variable annuities valuation and risk management☆," International Review of Financial Analysis, Elsevier, vol. 68(C).
    7. Kouritzin, Michael A. & MacKay, Anne, 2018. "VIX-linked fees for GMWBs via explicit solution simulation methods," Insurance: Mathematics and Economics, Elsevier, vol. 81(C), pages 1-17.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shevchenko, Pavel V. & Luo, Xiaolin, 2017. "Valuation of variable annuities with Guaranteed Minimum Withdrawal Benefit under stochastic interest rate," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 104-117.
    2. Moenig, Thorsten, 2021. "Variable annuities: Market incompleteness and policyholder behavior," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 63-78.
    3. Feng, Runhuan & Yi, Bingji, 2019. "Quantitative modeling of risk management strategies: Stochastic reserving and hedging of variable annuity guaranteed benefits," Insurance: Mathematics and Economics, Elsevier, vol. 85(C), pages 60-73.
    4. Jin Sun & Pavel V. Shevchenko & Man Chung Fung, 2018. "The Impact of Management Fees on the Pricing of Variable Annuity Guarantees," Risks, MDPI, vol. 6(3), pages 1-20, September.
    5. Maciej Augustyniak & Mathieu Boudreault, 2017. "Mitigating Interest Rate Risk in Variable Annuities: An Analysis of Hedging Effectiveness under Model Risk," North American Actuarial Journal, Taylor & Francis Journals, vol. 21(4), pages 502-525, October.
    6. Parsiad Azimzadeh & Peter A. Forsyth, 2015. "The existence of optimal bang-bang controls for GMxB contracts," Papers 1502.05743, arXiv.org, revised Nov 2015.
    7. Ludovic Goudenege & Andrea Molent & Antonino Zanette, 2019. "Pricing and hedging GMWB in the Heston and in the Black–Scholes with stochastic interest rate models," Computational Management Science, Springer, vol. 16(1), pages 217-248, February.
    8. Feng, Runhuan & Jing, Xiaochen, 2017. "Analytical valuation and hedging of variable annuity guaranteed lifetime withdrawal benefits," Insurance: Mathematics and Economics, Elsevier, vol. 72(C), pages 36-48.
    9. Pavel V. Shevchenko & Xiaolin Luo, 2016. "Valuation of Variable Annuities with Guaranteed Minimum Withdrawal Benefit under Stochastic Interest Rate," Papers 1602.03238, arXiv.org, revised Jan 2017.
    10. Yao Tung Huang & Yue Kuen Kwok, 2016. "Regression-based Monte Carlo methods for stochastic control models: variable annuities with lifelong guarantees," Quantitative Finance, Taylor & Francis Journals, vol. 16(6), pages 905-928, June.
    11. Chen, Ze & Feng, Runhuan & Li, Hong & Yang, Tianyu, 2024. "Coping with longevity via hedging: Fair dynamic valuation of variable annuities," Insurance: Mathematics and Economics, Elsevier, vol. 117(C), pages 154-169.
    12. Bacinello, Anna Rita & Maggistro, Rosario & Zoccolan, Ivan, 2024. "Risk-neutral valuation of GLWB riders in variable annuities," Insurance: Mathematics and Economics, Elsevier, vol. 114(C), pages 1-14.
    13. Thorsten Moenig, 2021. "Efficient valuation of variable annuity portfolios with dynamic programming," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(4), pages 1023-1055, December.
    14. Paolo Angelis & Roberto Marchis & Antonio L. Martire & Emilio Russo, 2022. "A flexible lattice framework for valuing options on assets paying discrete dividends and variable annuities embedding GMWB riders," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 45(1), pages 415-446, June.
    15. Claudio Fontana & Francesco Rotondi, 2022. "Valuation of general GMWB annuities in a low interest rate environment," Papers 2208.10183, arXiv.org, revised Aug 2023.
    16. Goudenège, Ludovic & Molent, Andrea & Zanette, Antonino, 2016. "Pricing and hedging GLWB in the Heston and in the Black–Scholes with stochastic interest rate models," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 38-57.
    17. Gan Guojun & Valdez Emiliano A., 2017. "Valuation of large variable annuity portfolios: Monte Carlo simulation and synthetic datasets," Dependence Modeling, De Gruyter, vol. 5(1), pages 354-374, December.
    18. Dai, Tian-Shyr & Yang, Sharon S. & Liu, Liang-Chih, 2015. "Pricing guaranteed minimum/lifetime withdrawal benefits with various provisions under investment, interest rate and mortality risks," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 364-379.
    19. Dong, Bing & Xu, Wei & Sevic, Aleksandar & Sevic, Zeljko, 2020. "Efficient willow tree method for variable annuities valuation and risk management☆," International Review of Financial Analysis, Elsevier, vol. 68(C).
    20. van Bilsen, Servaas & Linders, Daniël, 2019. "Affordable and adequate annuities with stable payouts: Fantasy or reality?," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 19-42.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:17:y:2017:i:3:p:471-478. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.