IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v13y2013i10p1653-1673.html
   My bibliography  Save this article

Extension of the random matrix theory to the L-moments for robust portfolio selection

Author

Listed:
  • Ghislain Yanou

Abstract

In this paper, we propose an approach for selecting stocks from a large investment universe by studying information on the eigenvalues of the correlation matrix. For this purpose, we use a robust measure of moments called L-moments, and their extensions to a multivariate framework. The random matrix theory allows us to extract factors which contain real information from the estimator of the correlation matrix obtained using the L-moments (henceforth the Lcorrelation matrix). An empirical study of the American market shows the coherence of such an approach and highlights the consistency of the Lcorrelation matrix in comparison with the sample correlation matrix. For both estimators of the correlation matrix, it seems that the largest eigenvalue corresponds to the market, and that the other eigenvalues which contain information partition the set of all stocks into distinct sectorial groups. An analysis of the group of stocks shows that the selected stocks obtained from the Lcorrelation matrix outperform those obtained from the sample correlation matrix in terms of the Sharpe ratio, although the sample correlation matrix provides a well-diversified portfolio in terms of volatility in an out-of-sample investment approach.

Suggested Citation

  • Ghislain Yanou, 2013. "Extension of the random matrix theory to the L-moments for robust portfolio selection," Quantitative Finance, Taylor & Francis Journals, vol. 13(10), pages 1653-1673, October.
  • Handle: RePEc:taf:quantf:v:13:y:2013:i:10:p:1653-1673
    DOI: 10.1080/14697688.2012.745946
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2012.745946
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2012.745946?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Conlon, T. & Ruskin, H.J. & Crane, M., 2007. "Random matrix theory and fund of funds portfolio optimisation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(2), pages 565-576.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim, Woo Chang & Fabozzi, Frank J. & Cheridito, Patrick & Fox, Charles, 2014. "Controlling portfolio skewness and kurtosis without directly optimizing third and fourth moments," Economics Letters, Elsevier, vol. 122(2), pages 154-158.
    2. Ren, Tiantian & Kerstens, Kristiaan & Kumar, Saurav, 2024. "Risk-aversion versus risk-loving preferences in nonparametric frontier-based fund ratings: A buy-and-hold backtesting strategy," European Journal of Operational Research, Elsevier, vol. 319(1), pages 332-344.
    3. Luigi Grossi & Fabrizio Laurini, 2020. "Robust asset allocation with conditional value at risk using the forward search," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 36(3), pages 335-352, May.
    4. Brandouy, Olivier & Kerstens, Kristiaan & Van de Woestyne, Ignace, 2015. "Frontier-based vs. traditional mutual fund ratings: A first backtesting analysis," European Journal of Operational Research, Elsevier, vol. 242(1), pages 332-342.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nguyen, An Pham Ngoc & Mai, Tai Tan & Bezbradica, Marija & Crane, Martin, 2023. "Volatility and returns connectedness in cryptocurrency markets: Insights from graph-based methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    2. Gloria Polinesi & Maria Cristina Recchioni, 2021. "Filtered clustering for exchange traded fund," RIEDS - Rivista Italiana di Economia, Demografia e Statistica - The Italian Journal of Economic, Demographic and Statistical Studies, SIEDS Societa' Italiana di Economia Demografia e Statistica, vol. 75(1), pages 125-135, January-M.
    3. Conlon, T. & Ruskin, H.J. & Crane, M., 2009. "Cross-correlation dynamics in financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(5), pages 705-714.
    4. Nie, Chun-Xiao, 2021. "Analyzing financial correlation matrix based on the eigenvector–eigenvalue identity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
    5. Nick James & Max Menzies, 2023. "Collective dynamics, diversification and optimal portfolio construction for cryptocurrencies," Papers 2304.08902, arXiv.org, revised Jun 2023.
    6. Sandoval, Leonidas Junior & Bruscato, Adriana & Venezuela, Maria Kelly, 2012. "Building portfolios of stocks in the São Paulo Stock Exchange using Random Matrix Theory," Insper Working Papers wpe_270, Insper Working Paper, Insper Instituto de Ensino e Pesquisa.
    7. Leonidas Sandoval Junior & Adriana Bruscato & Maria Kelly Venezuela, 2012. "Building portfolios of stocks in the S\~ao Paulo Stock Exchange using Random Matrix Theory," Papers 1201.0625, arXiv.org, revised Mar 2013.
    8. S. Valeyre & D. S. Grebenkov & S. Aboura, 2018. "Emergence of correlations between securities at short time scales," Papers 1807.05015, arXiv.org.
    9. Herteliu, Claudiu & Levantesi, Susanna & Rotundo, Giulia, 2021. "Network analysis of pension funds investments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 579(C).
    10. Sebastien Valeyre & Denis S Grebenkov & Sofiane Aboura, 2019. "Emergence of correlations between securities at short time scales," Post-Print hal-02343888, HAL.
    11. Ankit Dangi, 2013. "Financial Portfolio Optimization: Computationally guided agents to investigate, analyse and invest!?," Papers 1301.4194, arXiv.org.
    12. Leonidas Sandoval Junior & Italo De Paula Franca, 2011. "Correlation of financial markets in times of crisis," Papers 1102.1339, arXiv.org, revised Mar 2011.
    13. Sieds, 2021. "Complete Volume LXXV n. 1 2021," RIEDS - Rivista Italiana di Economia, Demografia e Statistica - The Italian Journal of Economic, Demographic and Statistical Studies, SIEDS Societa' Italiana di Economia Demografia e Statistica, vol. 75(1), pages 1-138, January-M.
    14. Paolo Giudici & Gloria Polinesi & Alessandro Spelta, 2022. "Network models to improve robot advisory portfolios," Annals of Operations Research, Springer, vol. 313(2), pages 965-989, June.
    15. Sandoval, Leonidas & Franca, Italo De Paula, 2012. "Correlation of financial markets in times of crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 187-208.
    16. J. Gavin & M. Crane, 2021. "Community Detection in Cryptocurrencies with Potential Applications to Portfolio Diversification," Papers 2108.09763, arXiv.org.
    17. Wang, Gang-Jin & Xie, Chi & Chen, Shou & Yang, Jiao-Jiao & Yang, Ming-Yan, 2013. "Random matrix theory analysis of cross-correlations in the US stock market: Evidence from Pearson’s correlation coefficient and detrended cross-correlation coefficient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3715-3730.
    18. Nick James, 2021. "Evolutionary correlation, regime switching, spectral dynamics and optimal trading strategies for cryptocurrencies and equities," Papers 2112.15321, arXiv.org, revised Mar 2022.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:13:y:2013:i:10:p:1653-1673. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.