On the uncertainty of real estate price predictions
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Jozef Zurada & Alan S. Levitan & Jian Guan, 2011. "A Comparison of Regression and Artificial Intelligence Methods in a Mass Appraisal Context," Journal of Real Estate Research, American Real Estate Society, vol. 33(3), pages 349-388.
- Anders Hjort & Johan Pensar & Ida Scheel & Dag Einar Sommervoll, 2022. "House price prediction with gradient boosted trees under different loss functions," Journal of Property Research, Taylor & Francis Journals, vol. 39(4), pages 338-364, October.
- Winky K.O. Ho & Bo-Sin Tang & Siu Wai Wong, 2021. "Predicting property prices with machine learning algorithms," Journal of Property Research, Taylor & Francis Journals, vol. 38(1), pages 48-70, January.
- Steven Peterson & Albert B. Flanagan, 2009. "Neural Network Hedonic Pricing Models in Mass Real Estate Appraisal," Journal of Real Estate Research, American Real Estate Society, vol. 31(2), pages 147-164.
- Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
- Jing Lei & James Robins & Larry Wasserman, 2013. "Distribution-Free Prediction Sets," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(501), pages 278-287, March.
- Jing Lei & Larry Wasserman, 2014. "Distribution-free prediction bands for non-parametric regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(1), pages 71-96, January.
- Goodman, Allen C., 1978. "Hedonic prices, price indices and housing markets," Journal of Urban Economics, Elsevier, vol. 5(4), pages 471-484, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Juergen Deppner & Marcelo Cajias, 2024. "Accounting for Spatial Autocorrelation in Algorithm-Driven Hedonic Models: A Spatial Cross-Validation Approach," The Journal of Real Estate Finance and Economics, Springer, vol. 68(2), pages 235-273, February.
- Jose Torres-Pruñonosa & Pablo GarcÃa-Estévez & Josep Maria Raya & Camilo Prado-Román, 2022. "How on Earth Did Spanish Banking Sell the Housing Stock?," SAGE Open, , vol. 12(1), pages 21582440221, March.
- Victor Chernozhukov & Kaspar Wuthrich & Yinchu Zhu, 2019.
"Distributional conformal prediction,"
Papers
1909.07889, arXiv.org, revised Aug 2021.
- Chernozhukov, Victor & Wüthrich, Kaspar & Zhu, Yinchu, 2021. "Distributional conformal prediction," University of California at San Diego, Economics Working Paper Series qt2zs6m5p5, Department of Economics, UC San Diego.
- João A. Bastos, 2023. "Conformal prediction of option prices," Working Papers REM 2023/0304, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
- Dean Fantazzini, 2024.
"Adaptive Conformal Inference for Computing Market Risk Measures: An Analysis with Four Thousand Crypto-Assets,"
JRFM, MDPI, vol. 17(6), pages 1-44, June.
- Fantazzini, Dean, 2024. "Adaptive Conformal Inference for computing Market Risk Measures: an Analysis with Four Thousands Crypto-Assets," MPRA Paper 121214, University Library of Munich, Germany.
- Hu, Jianming & Luo, Qingxi & Tang, Jingwei & Heng, Jiani & Deng, Yuwen, 2022. "Conformalized temporal convolutional quantile regression networks for wind power interval forecasting," Energy, Elsevier, vol. 248(C).
- David J. Olive, 2018. "Applications of hyperellipsoidal prediction regions," Statistical Papers, Springer, vol. 59(3), pages 913-931, September.
- William Cheung & Lewen Guo & Yuichiro Kawaguchi, 2021. "Automated valuation model for residential rental markets: evidence from Japan," Journal of Spatial Econometrics, Springer, vol. 2(1), pages 1-34, December.
- Narula, Subhash C. & Wellington, John F. & Lewis, Stephen A., 2012. "Valuating residential real estate using parametric programming," European Journal of Operational Research, Elsevier, vol. 217(1), pages 120-128.
- Tien Foo Sing & Jesse Jingye Yang & Shi Ming Yu, 2022. "Boosted Tree Ensembles for Artificial Intelligence Based Automated Valuation Models (AI-AVM)," The Journal of Real Estate Finance and Economics, Springer, vol. 65(4), pages 649-674, November.
- Çağlayan Ebru & Arikan Eban, 2011. "Determinants of house prices in Istanbul: a quantile regression approach," Quality & Quantity: International Journal of Methodology, Springer, vol. 45(2), pages 305-317, February.
- Fritsch, Markus & Haupt, Harry & Ng, Pin T., 2016. "Urban house price surfaces near a World Heritage Site: Modeling conditional price and spatial heterogeneity," Regional Science and Urban Economics, Elsevier, vol. 60(C), pages 260-275.
- Victor Chernozhukov & Kaspar Wüthrich & Yinchu Zhu, 2018. "Exact and robust conformal inference methods for predictive machine learning with dependent data," CeMMAP working papers CWP16/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Daikun Wang & Victor Jing Li, 2019. "Mass Appraisal Models of Real Estate in the 21st Century: A Systematic Literature Review," Sustainability, MDPI, vol. 11(24), pages 1-14, December.
- Beatriz Larraz, 2011. "An Expert System for Online Residential Properties Valuation," Review of Economics & Finance, Better Advances Press, Canada, vol. 1, pages 69-82, April.
- Xie, Haihan & Kong, Linglong, 2023. "Gaussian copula function-on-scalar regression in reproducing kernel Hilbert space," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
- Algo Carè & Simone Garatti & Marco C. Campi, 2017. "A coverage theory for least squares," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1367-1389, November.
- Takahiro Yoshida & Daisuke Murakami & Hajime Seya, 2024. "Spatial Prediction of Apartment Rent using Regression-Based and Machine Learning-Based Approaches with a Large Dataset," The Journal of Real Estate Finance and Economics, Springer, vol. 69(1), pages 1-28, July.
- Akosah, Nana Kwame & Alagidede, Imhotep Paul & Schaling, Eric, 2020. "Testing for asymmetry in monetary policy rule for small-open developing economies: Multiscale Bayesian quantile evidence from Ghana," The Journal of Economic Asymmetries, Elsevier, vol. 22(C).
- Paul Hewson & Keming Yu, 2008. "Quantile regression for binary performance indicators," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(5), pages 401-418, September.
More about this item
Keywords
Real estate; Automated valuation model; Conformal prediction; Quantile regression; Machine learning.;All these keywords.
NEP fields
This paper has been announced in the following NEP Reports:- NEP-FOR-2024-04-15 (Forecasting)
- NEP-URE-2024-04-15 (Urban and Real Estate Economics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ise:remwps:wp03142024. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sandra Araújo (email available below). General contact details of provider: https://rem.rc.iseg.ulisboa.pt/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.