IDEAS home Printed from https://ideas.repec.org/a/taf/jocebs/v6y2008i3p225-239.html
   My bibliography  Save this article

Do sentiment indicators help to assess and predict actual developments of the Chinese economy?

Author

Listed:
  • Aaron Mehrotra
  • Jouko Rautava

Abstract

This paper evaluates the usefulness of business sentiment indicators for forecasting developments in the Chinese real economy. We use data on diffusion indices collected by the People's Bank of China for forecasting industrial production, retail sales and exports. Our bivariate vector autoregressive models, each composed of one diffusion index and one real sector variable, generally outperform univariate autoregressive models in forecasting one to four quarters ahead. Similarly, principal components analysis, combining information from various diffusion indices, leads to enhanced forecasting performance. Our results indicate that Chinese business sentiment indicators convey useful information about current and future developments in the real economy. Moreover, the results could be seen as support for the reliability of the official data on the real economy, as both survey and real sector data seem to reflect the same underlying economic dynamics. … But historically, we always observed in the past that the hard data followed suit soft data. There was a strong correlation. (Jean-Claude Trichet, President of the European Central Bank)1

Suggested Citation

  • Aaron Mehrotra & Jouko Rautava, 2008. "Do sentiment indicators help to assess and predict actual developments of the Chinese economy?," Journal of Chinese Economic and Business Studies, Taylor & Francis Journals, vol. 6(3), pages 225-239.
  • Handle: RePEc:taf:jocebs:v:6:y:2008:i:3:p:225-239
    DOI: 10.1080/14765280802283451
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/14765280802283451
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14765280802283451?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. repec:zbw:bofitp:2006_006 is not listed on IDEAS
    2. Carsten A. Holz, 2004. "China's Statistical System in Transition: Challenges, Data Problems, and Institutional Innovations," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 50(3), pages 381-409, September.
    3. Curran, Declan & Funke, Michael, 2006. "Taking the temperature: forecasting GDP growth for mainland in China," BOFIT Discussion Papers 6/2006, Bank of Finland Institute for Emerging Economies (BOFIT).
    4. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joscha Beckmann & Ansgar Belke & Michael Kühl, 2011. "Global Integration of Central and Eastern European Financial Markets—The Role of Economic Sentiments," Review of International Economics, Wiley Blackwell, vol. 19(1), pages 137-157, February.
    2. Asger Lunde & Miha Torkar, 2020. "Including news data in forecasting macro economic performance of China," Computational Management Science, Springer, vol. 17(4), pages 585-611, December.
    3. Juuso Kaaresvirta & Aaron Mehrotra, 2009. "Business surveys and inflation forecasting in China," Economic Change and Restructuring, Springer, vol. 42(4), pages 263-271, November.
    4. Ansgar Belke & Joscha Beckmann & Michael Kühl, 2010. "Global Integration of Central and Eastern European Financial Markets – The Role of Economic Sentiments," Ruhr Economic Papers 0174, Rheinisch-Westfälisches Institut für Wirtschaftsforschung, Ruhr-Universität Bochum, Universität Dortmund, Universität Duisburg-Essen.
    5. Juuso Kaaresvirta & Aaron Mehrotra, 2009. "Business surveys and inflation forecasting in China," Economic Change and Restructuring, Springer, vol. 42(4), pages 263-271, November.
    6. repec:zbw:bofitp:2008_022 is not listed on IDEAS
    7. repec:zbw:rwirep:0174 is not listed on IDEAS

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juuso Kaaresvirta & Aaron Mehrotra, 2009. "Business surveys and inflation forecasting in China," Economic Change and Restructuring, Springer, vol. 42(4), pages 263-271, November.
    2. repec:zbw:bofitp:2008_022 is not listed on IDEAS
    3. Juuso Kaaresvirta & Aaron Mehrotra, 2009. "Business surveys and inflation forecasting in China," Economic Change and Restructuring, Springer, vol. 42(4), pages 263-271, November.
    4. Juan José Echavarría & Andrés González, 2012. "Choques internacionales reales y financieros y su impacto sobre la economía colombiana," Revista ESPE - Ensayos sobre Política Económica, Banco de la Republica de Colombia, vol. 30(69), pages 14-66, December.
    5. Faria, Gonçalo & Verona, Fabio, 2023. "Forecast combination in the frequency domain," Bank of Finland Research Discussion Papers 1/2023, Bank of Finland.
    6. Chen, Qitong & Hong, Yongmiao & Li, Haiqi, 2024. "Time-varying forecast combination for factor-augmented regressions with smooth structural changes," Journal of Econometrics, Elsevier, vol. 240(1).
    7. Tomohiro Ando & Ruey S. Tsay, 2009. "Model selection for generalized linear models with factor‐augmented predictors," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(3), pages 207-235, May.
    8. Michał Brzoza-Brzezina & Jacek Kotłowski, 2009. "Bezwzględna stopa inflacji w gospodarce polskiej," Gospodarka Narodowa. The Polish Journal of Economics, Warsaw School of Economics, issue 9, pages 1-21.
    9. Máximo Camacho & Rafael Doménech, 2012. "MICA-BBVA: a factor model of economic and financial indicators for short-term GDP forecasting," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 3(4), pages 475-497, December.
    10. Hyeongwoo Kim & Wen Shi & Hyun Hak Kim, 2020. "Forecasting financial stress indices in Korea: a factor model approach," Empirical Economics, Springer, vol. 59(6), pages 2859-2898, December.
    11. Miranda-Agrippino, Silvia & Ricco, Giovanni, 2018. "Bayesian Vector Autoregressions," The Warwick Economics Research Paper Series (TWERPS) 1159, University of Warwick, Department of Economics.
    12. Croushore, Dean & Evans, Charles L., 2006. "Data revisions and the identification of monetary policy shocks," Journal of Monetary Economics, Elsevier, vol. 53(6), pages 1135-1160, September.
    13. Li, Linjie & Liu, Xiaming & Yuan, Dong & Yu, Miaojie, 2017. "Does outward FDI generate higher productivity for emerging economy MNEs? – Micro-level evidence from Chinese manufacturing firms," International Business Review, Elsevier, vol. 26(5), pages 839-854.
    14. Marc Burri & Daniel Kaufmann, 2020. "A daily fever curve for the Swiss economy," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 156(1), pages 1-11, December.
    15. John M. Maheu & Stephen Gordon, 2008. "Learning, forecasting and structural breaks," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(5), pages 553-583.
    16. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    17. Charles Ka Yui Leung & Joe Cho Yiu Ng, 2018. "Macro Aspects of Housing," GRU Working Paper Series GRU_2018_016, City University of Hong Kong, Department of Economics and Finance, Global Research Unit.
    18. Volha Audzei & Sergey Slobodyan, 2024. "Dynamic Sparse Restricted Perceptions Equilibria," CERGE-EI Working Papers wp792, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
    19. Goodness C. Aye & Stephen M. Miller & Rangan Gupta & Mehmet Balcilar, 2016. "Forecasting US real private residential fixed investment using a large number of predictors," Empirical Economics, Springer, vol. 51(4), pages 1557-1580, December.
    20. Liu, Tung & Li, Kui-Wai, 2006. "Disparity in factor contributions between coastal and inner provinces in post-reform China," China Economic Review, Elsevier, vol. 17(4), pages 449-470.
    21. Andrea Carriero & George Kapetanios & Massimiliano Marcellino, 2011. "Forecasting large datasets with Bayesian reduced rank multivariate models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(5), pages 735-761, August.

    More about this item

    Keywords

    forecasting; diffusion index; VAR; China;
    All these keywords.

    JEL classification:

    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • P27 - Political Economy and Comparative Economic Systems - - Socialist and Transition Economies - - - Performance and Prospects

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jocebs:v:6:y:2008:i:3:p:225-239. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RCEA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.