IDEAS home Printed from https://ideas.repec.org/a/taf/jnlbes/v35y2017i3p389-406.html
   My bibliography  Save this article

Predicting Early Data Revisions to U.S. GDP and the Effects of Releases on Equity Markets

Author

Listed:
  • Michael P. Clements
  • Ana Beatriz Galvão

Abstract

The effects of data uncertainty on real-time decision-making can be reduced by predicting data revisions to U.S. GDP growth. We show that survey forecasts efficiently predict the revision implicit in the second estimate of GDP growth, but that forecasting models incorporating monthly economic indicators and daily equity returns provide superior forecasts of the data revision implied by the release of the third estimate. We use forecasting models to measure the impact of surprises in GDP announcements on equity markets, and to analyze the effects of anticipated future revisions on announcement-day returns. We show that the publication of better than expected third-release GDP figures provides a boost to equity markets, and if future upward revisions are expected, the effects are enhanced during recessions.

Suggested Citation

  • Michael P. Clements & Ana Beatriz Galvão, 2017. "Predicting Early Data Revisions to U.S. GDP and the Effects of Releases on Equity Markets," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(3), pages 389-406, July.
  • Handle: RePEc:taf:jnlbes:v:35:y:2017:i:3:p:389-406
    DOI: 10.1080/07350015.2015.1076726
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07350015.2015.1076726
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07350015.2015.1076726?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:wrk:wrkemf:30 is not listed on IDEAS
    2. Clements, Michael P., 2019. "Do forecasters target first or later releases of national accounts data?," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1240-1249.
    3. repec:wrk:wrkemf:35 is not listed on IDEAS
    4. Tommaso Proietti & Alessandro Giovannelli, 2021. "Nowcasting monthly GDP with big data: A model averaging approach," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(2), pages 683-706, April.
    5. Ana Beatriz Galvão & James Mitchell & Johnny Runge, 2019. "Communicating Data Uncertainty: Experimental Evidence for U.K. GDP," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2019-20, Economic Statistics Centre of Excellence (ESCoE).
    6. Ederington, Louis & Guan, Wei & Yang, Lisa (Zongfei), 2019. "The impact of the U.S. employment report on exchange rates," Journal of International Money and Finance, Elsevier, vol. 90(C), pages 257-267.
    7. Gatti, Roberta & Lederman, Daniel & Islam, Asif M. & Nguyen, Ha & Lotfi, Rana & Emam Mousa, Mennatallah, 2024. "Data transparency and GDP growth forecast errors," Journal of International Money and Finance, Elsevier, vol. 140(C).
    8. repec:wrk:wrkemf:22 is not listed on IDEAS
    9. repec:wrk:wrkemf:31 is not listed on IDEAS
    10. Barbara Rossi, 2019. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," Working Papers 1162, Barcelona School of Economics.
    11. Clements, Michael P. & Galvão, Ana Beatriz, 2017. "Model and survey estimates of the term structure of US macroeconomic uncertainty," International Journal of Forecasting, Elsevier, vol. 33(3), pages 591-604.
    12. Sayag, Doron & Ben-hur, Dano & Pfeffermann, Danny, 2022. "Reducing revisions in hedonic house price indices by the use of nowcasts," International Journal of Forecasting, Elsevier, vol. 38(1), pages 253-266.
    13. Alex Minne & Marc Francke & David Geltner & Robert White, 2020. "Using Revisions as a Measure of Price Index Quality in Repeat-Sales Models," The Journal of Real Estate Finance and Economics, Springer, vol. 60(4), pages 514-553, May.
    14. Nikoleta Anesti & Ana Beatriz Galvão & Silvia Miranda‐Agrippino, 2022. "Uncertain Kingdom: Nowcasting Gross Domestic Product and its revisions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(1), pages 42-62, January.
    15. Funashima, Yoshito & Iizuka, Nobuo & Ohtsuka, Yoshihiro, 2020. "GDP announcements and stock prices," Journal of Economics and Business, Elsevier, vol. 108(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:35:y:2017:i:3:p:389-406. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UBES20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.