IDEAS home Printed from https://ideas.repec.org/a/taf/jnlbes/v34y2016i4p564-573.html
   My bibliography  Save this article

Modeling Multivariate Volatilities via Latent Common Factors

Author

Listed:
  • Weiming Li
  • Jing Gao
  • Kunpeng Li
  • Qiwei Yao

Abstract

Volatility, represented in the form of conditional heteroscedasticity, plays an important role in controlling and forecasting risks in various financial operations including asset pricing, portfolio allocation, and hedging futures. However, modeling and forecasting multi-dimensional conditional heteroscedasticity are technically challenging. As the volatilities of many financial assets are often driven by a few common and latent factors, we propose in this article a dimension-reduction method to model a multivariate volatility process and to estimate a lower-dimensional space, to be called the volatility space, within which the dynamics of the multivariate volatility process is confined. The new method is simple to use, as technically it boils down to an eigenanalysis for a nonnegative definite matrix. Hence, it is applicable to the cases when the number of assets concerned is in the order of thousands (using an ordinary PC/laptop). On the other hand, the model has the capability to cater for complex conditional heteroscedasticity behavior for multi-dimensional processes. Some asymptotic properties for the new method are established. We further illustrate the new method using both simulated and real data examples.

Suggested Citation

  • Weiming Li & Jing Gao & Kunpeng Li & Qiwei Yao, 2016. "Modeling Multivariate Volatilities via Latent Common Factors," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 564-573, October.
  • Handle: RePEc:taf:jnlbes:v:34:y:2016:i:4:p:564-573
    DOI: 10.1080/07350015.2015.1092975
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07350015.2015.1092975
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07350015.2015.1092975?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carlos Trucíos & Mauricio Zevallos & Luiz K. Hotta & André A. P. Santos, 2019. "Covariance Prediction in Large Portfolio Allocation," Econometrics, MDPI, vol. 7(2), pages 1-24, May.
    2. Hallin, Marc & Trucíos, Carlos, 2023. "Forecasting value-at-risk and expected shortfall in large portfolios: A general dynamic factor model approach," Econometrics and Statistics, Elsevier, vol. 27(C), pages 1-15.
    3. Carlos Trucíos & João H. G. Mazzeu & Marc Hallin & Luiz K. Hotta & Pedro L. Valls Pereira & Mauricio Zevallos, 2022. "Forecasting Conditional Covariance Matrices in High-Dimensional Time Series: A General Dynamic Factor Approach," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(1), pages 40-52, December.
    4. Carlos Cesar Trucios-Maza & João H. G Mazzeu & Luis K. Hotta & Pedro L. Valls Pereira & Marc Hallin, 2019. "On the robustness of the general dynamic factor model with infinite-dimensional space: identification, estimation, and forecasting," Working Papers ECARES 2019-32, ULB -- Universite Libre de Bruxelles.
    5. Gianluca Cubadda & Alain Hecq, 2022. "Dimension Reduction for High‐Dimensional Vector Autoregressive Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 84(5), pages 1123-1152, October.
    6. Trucíos, Carlos & Hotta, Luiz K. & Valls Pereira, Pedro L., 2019. "On the robustness of the principal volatility components," Journal of Empirical Finance, Elsevier, vol. 52(C), pages 201-219.
    7. Reiß, Markus & Winkelmann, Lars, 2021. "Inference on the maximal rank of time-varying covariance matrices using high-frequency data," Discussion Papers 2021/14, Free University Berlin, School of Business & Economics.
    8. Trucíos, Carlos & Mazzeu, João H.G. & Hotta, Luiz K. & Valls Pereira, Pedro L. & Hallin, Marc, 2021. "Robustness and the general dynamic factor model with infinite-dimensional space: Identification, estimation, and forecasting," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1520-1534.
    9. Gianluca Cubadda & Alain Hecq, 2020. "Dimension Reduction for High Dimensional Vector Autoregressive Models," Papers 2009.03361, arXiv.org, revised Feb 2022.
    10. Marc Hallin & Carlos Trucíos, 2020. "Forecasting Value-at-Risk and Expected Shortfall in Large Portfolios: a General Dynamic Factor Approach," Working Papers ECARES 2020-50, ULB -- Universite Libre de Bruxelles.
    11. Alessandra Amendola & Vincenzo Candila & Antonio Naimoli & Giuseppe Storti, 2024. "Adaptive combinations of tail-risk forecasts," Papers 2406.06235, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:34:y:2016:i:4:p:564-573. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UBES20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.