IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v113y2018i522p845-854.html
   My bibliography  Save this article

Residuals and Diagnostics for Ordinal Regression Models: A Surrogate Approach

Author

Listed:
  • Dungang Liu
  • Heping Zhang

Abstract

Ordinal outcomes are common in scientific research and everyday practice, and we often rely on regression models to make inference. A long-standing problem with such regression analyses is the lack of effective diagnostic tools for validating model assumptions. The difficulty arises from the fact that an ordinal variable has discrete values that are labeled with, but not, numerical values. The values merely represent ordered categories. In this article, we propose a surrogate approach to defining residuals for an ordinal outcome Y. The idea is to define a continuous variable S as a “surrogate” of Y and then obtain residuals based on S. For the general class of cumulative link regression models, we study the residual’s theoretical and graphical properties. We show that the residual has null properties similar to those of the common residuals for continuous outcomes. Our numerical studies demonstrate that the residual has power to detect misspecification with respect to (1) mean structures; (2) link functions; (3) heteroscedasticity; (4) proportionality; and (5) mixed populations. The proposed residual also enables us to develop numeric measures for goodness of fit using classical distance notions. Our results suggest that compared to a previously defined residual, our residual can reveal deeper insights into model diagnostics. We stress that this work focuses on residual analysis, rather than hypothesis testing. The latter has limited utility as it only provides a single p-value, whereas our residual can reveal what components of the model are misspecified and advise how to make improvements. Supplementary materials for this article are available online.

Suggested Citation

  • Dungang Liu & Heping Zhang, 2018. "Residuals and Diagnostics for Ordinal Regression Models: A Surrogate Approach," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 845-854, April.
  • Handle: RePEc:taf:jnlasa:v:113:y:2018:i:522:p:845-854
    DOI: 10.1080/01621459.2017.1292915
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2017.1292915
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2017.1292915?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jean‐Sauveur Ay, 2021. "The Informational Content of Geographical Indications," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(2), pages 523-542, March.
    2. Zewei Lin & Dungang Liu, 2022. "Model diagnostics of discrete data regression: a unifying framework using functional residuals," Papers 2207.04299, arXiv.org.
    3. Liu, Dungang & Li, Shaobo & Yu, Yan & Moustaki, Irini, 2020. "Assessing partial association between ordinal variables: quantification, visualization, and hypothesis testing," LSE Research Online Documents on Economics 105558, London School of Economics and Political Science, LSE Library.
    4. Maria Iannario & Anna Clara Monti, 2023. "Generalized residuals and outlier detection for ordinal data with challenging data structures," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(4), pages 1197-1216, October.
    5. Nicola Pontarollo & Mercy Orellana & Joselin Segovia, 2020. "The Determinants of Subjective Well-Being in a Developing Country: The Ecuadorian Case," Journal of Happiness Studies, Springer, vol. 21(8), pages 3007-3035, December.
    6. Domenico Piccolo & Rosaria Simone, 2019. "The class of cub models: statistical foundations, inferential issues and empirical evidence," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(3), pages 389-435, September.
    7. Maria Iannario & Anna Clara Monti, 2022. "Modelling consumer perceptions of service quality for urban public transport systems using statistical models for ordinal data," METRON, Springer;Sapienza Università di Roma, vol. 80(1), pages 61-76, April.
    8. Weirong Li & Wensheng Zhu, 2024. "Subgroup analysis with concave pairwise fusion penalty for ordinal response," Statistical Papers, Springer, vol. 65(6), pages 3327-3355, August.
    9. Ejike R. Ugba & Daniel Mörlein & Jan Gertheiss, 2021. "Smoothing in Ordinal Regression: An Application to Sensory Data," Stats, MDPI, vol. 4(3), pages 1-18, July.
    10. Chowdhury, K.P., 2023. "Nonparametric functional analysis under joint estimation with applications to identifying highly cited papers," Journal of Informetrics, Elsevier, vol. 17(4).
    11. Rosaria Simone, 2023. "Uncertainty Diagnostics of Binomial Regression Trees for Ordered Rating Data," Journal of Classification, Springer;The Classification Society, vol. 40(1), pages 79-105, April.
    12. Jochen Ranger & Kay Brauer, 2022. "On the Generalized S − X 2 –Test of Item Fit: Some Variants, Residuals, and a Graphical Visualization," Journal of Educational and Behavioral Statistics, , vol. 47(2), pages 202-230, April.
    13. Jiannan Lu & Yunshu Zhang & Peng Ding, 2020. "Sharp bounds on the relative treatment effect for ordinal outcomes," Biometrics, The International Biometric Society, vol. 76(2), pages 664-669, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:113:y:2018:i:522:p:845-854. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.