IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v69y2013i2p417-426.html
   My bibliography  Save this article

A Joint Regression Analysis for Genetic Association Studies with Outcome Stratified Samples

Author

Listed:
  • Colin O. Wu
  • Gang Zheng
  • Minjung Kwak

Abstract

No abstract is available for this item.

Suggested Citation

  • Colin O. Wu & Gang Zheng & Minjung Kwak, 2013. "A Joint Regression Analysis for Genetic Association Studies with Outcome Stratified Samples," Biometrics, The International Biometric Society, vol. 69(2), pages 417-426, June.
  • Handle: RePEc:bla:biomet:v:69:y:2013:i:2:p:417-426
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/biom.12012
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. de Leon, A.R. & Zhu, Y., 2008. "ANOVA extensions for mixed discrete and continuous data," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 2218-2227, January.
    2. Arnab Maity & Raymond J. Carroll & Enno Mammen & Nilanjan Chatterjee, 2009. "Testing in semiparametric models with interaction, with applications to gene–environment interactions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(1), pages 75-96, January.
    3. Nilanjan Chatterjee & Raymond J. Carroll, 2005. "Semiparametric maximum likelihood estimation exploiting gene-environment independence in case-control studies," Biometrika, Biometrika Trust, vol. 92(2), pages 399-418, June.
    4. Zhang, Heping & Liu, Ching-Ti & Wang, Xueqin, 2010. "An Association Test for Multiple Traits Based on the Generalized Kendall’s Tau," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 473-481.
    5. W. Krzanowski, 1993. "The location model for mixtures of categorical and continuous variables," Journal of Classification, Springer;The Classification Society, vol. 10(1), pages 25-49, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu Cen & Zhong Ping-Shou & Cui Yuehua, 2018. "Additive varying-coefficient model for nonlinear gene-environment interactions," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 17(2), pages 1-18, April.
    2. A. R. de Leon & A. Soo & T. Williamson, 2011. "Classification with discrete and continuous variables via general mixed-data models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(5), pages 1021-1032, February.
    3. Summer S. Han & Philip S. Rosenberg & Arpita Ghosh & Maria Teresa Landi & Neil E. Caporaso & Nilanjan Chatterjee, 2015. "An exposure‐weighted score test for genetic associations integrating environmental risk factors," Biometrics, The International Biometric Society, vol. 71(3), pages 596-605, September.
    4. Jinbo Chen & Dongyu Lin & Hagit Hochner, 2012. "Semiparametric Maximum Likelihood Methods for Analyzing Genetic and Environmental Effects with Case-Control Mother–Child Pair Data," Biometrics, The International Biometric Society, vol. 68(3), pages 869-877, September.
    5. Bhat, Chandra R. & Pinjari, Abdul R. & Dubey, Subodh K. & Hamdi, Amin S., 2016. "On accommodating spatial interactions in a Generalized Heterogeneous Data Model (GHDM) of mixed types of dependent variables," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 240-263.
    6. Brisa N. Sánchez & Shan Kang & Bhramar Mukherjee, 2012. "A Latent Variable Approach to Study Gene–Environment Interactions in the Presence of Multiple Correlated Exposures," Biometrics, The International Biometric Society, vol. 68(2), pages 466-476, June.
    7. Layal Christine Lettry, 2023. "Clustering the Swiss Pension Register," FSES Working Papers 529, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    8. Nor Mahat & W.J. Krzanowski & A. Hernandez, 2009. "Strategies for Non-Parametric Smoothing of the Location Model in Mixed-Variable Discriminant Analysis," Modern Applied Science, Canadian Center of Science and Education, vol. 3(1), pages 151-151, January.
    9. Yan Ma, 2012. "On inference for Kendall's τ within a longitudinal data setting," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(11), pages 2441-2452, July.
    10. Thomas Bittmann & Jens‐Peter Loy & Sven Anders, 2020. "Product differentiation and cost pass‐through: industry‐wide versus firm‐specific cost shocks," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(4), pages 1184-1209, October.
    11. Bhramar Mukherjee & Jaeil Ahn & Stephen B. Gruber & Malay Ghosh & Nilanjan Chatterjee, 2010. "Case–Control Studies of Gene–Environment Interaction: Bayesian Design and Analysis," Biometrics, The International Biometric Society, vol. 66(3), pages 934-948, September.
    12. Chi-Ying Leung, 2001. "Error rates in classification consisting of discrete and continuous variables in the presence of covariates," Statistical Papers, Springer, vol. 42(2), pages 265-273, April.
    13. Sudha Bishnoi & Nadhir Al-Ansari & Mujahid Khan & Salim Heddam & Anurag Malik, 2022. "Classification of Cotton Genotypes with Mixed Continuous and Categorical Variables: Application of Machine Learning Models," Sustainability, MDPI, vol. 14(20), pages 1-17, October.
    14. Merbouha, A. & Mkhadri, A., 2004. "Regularization of the location model in discrimination with mixed discrete and continuous variables," Computational Statistics & Data Analysis, Elsevier, vol. 45(3), pages 563-576, April.
    15. Summer S. Han & Philip S. Rosenberg & Nilanjan Chatterjee, 2012. "Testing for Gene--Environment and Gene--Gene Interactions Under Monotonicity Constraints," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1441-1452, December.
    16. Hua Yun Chen & Daniel E. Rader & Mingyao Li, 2015. "Likelihood Inferences on Semiparametric Odds Ratio Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1125-1135, September.
    17. Leung, Chi-Ying, 2003. "The effect of across-location heteroscedasticity on the classification of mixed categorical and continuous data," Journal of Multivariate Analysis, Elsevier, vol. 84(2), pages 369-386, February.
    18. Ryan Sun & Raymond J. Carroll & David C. Christiani & Xihong Lin, 2018. "Testing for gene–environment interaction under exposure misspecification," Biometrics, The International Biometric Society, vol. 74(2), pages 653-662, June.
    19. Gustafson Paul, 2010. "Bayesian Inference for Partially Identified Models," The International Journal of Biostatistics, De Gruyter, vol. 6(2), pages 1-20, March.
    20. Hristina Pashova & Michael LeBlanc & Charles Kooperberg, 2017. "Structured Detection of Interactions with the Directed Lasso," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(2), pages 676-691, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:69:y:2013:i:2:p:417-426. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.