IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v108y2013i501p111-123.html
   My bibliography  Save this article

Sea Surface Temperature Modeling using Radial Basis Function Networks With a Dynamically Weighted Particle Filter

Author

Listed:
  • Duchwan Ryu
  • Faming Liang
  • Bani K. Mallick

Abstract

The sea surface temperature (SST) is an important factor of the earth climate system. A deep understanding of SST is essential for climate monitoring and prediction. In general, SST follows a nonlinear pattern in both time and location and can be modeled by a dynamic system which changes with time and location. In this article, we propose a radial basis function network-based dynamic model which is able to catch the nonlinearity of the data and propose to use the dynamically weighted particle filter to estimate the parameters of the dynamic model. We analyze the SST observed in the Caribbean Islands area after a hurricane using the proposed dynamic model. Comparing to the traditional grid-based approach that requires a supercomputer due to its high computational demand, our approach requires much less CPU time and makes real-time forecasting of SST doable on a personal computer. Supplementary materials for this article are available online.

Suggested Citation

  • Duchwan Ryu & Faming Liang & Bani K. Mallick, 2013. "Sea Surface Temperature Modeling using Radial Basis Function Networks With a Dynamically Weighted Particle Filter," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(501), pages 111-123, March.
  • Handle: RePEc:taf:jnlasa:v:108:y:2013:i:501:p:111-123
    DOI: 10.1080/01621459.2012.734151
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2012.734151
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2012.734151?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu J. S & Liang F. & Wong W.H., 2001. "A Theory for Dynamic Weighting in Monte Carlo Computation," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 561-573, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Suvo Chatterjee & Shrabanti Chowdhury & Duchwan Ryu & Sanjib Basu, 2023. "Bayesian functional data analysis over dependent regions and its application for identification of differentially methylated regions," Biometrics, The International Biometric Society, vol. 79(4), pages 3294-3306, December.
    2. Duchwan Ryu & Devrim Bilgili & Önder Ergönül & Faming Liang & Nader Ebrahimi, 2018. "A Bayesian Generalized Linear Model for Crimean–Congo Hemorrhagic Fever Incidents," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(1), pages 153-170, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rigat, F. & Mira, A., 2012. "Parallel hierarchical sampling: A general-purpose interacting Markov chains Monte Carlo algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1450-1467.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:108:y:2013:i:501:p:111-123. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.