IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v107y2012i497p180-193.html
   My bibliography  Save this article

A Valid Matérn Class of Cross-Covariance Functions for Multivariate Random Fields With Any Number of Components

Author

Listed:
  • Tatiyana V. Apanasovich
  • Marc G. Genton
  • Ying Sun

Abstract

We introduce a valid parametric family of cross-covariance functions for multivariate spatial random fields where each component has a covariance function from a well-celebrated Matérn class. Unlike previous attempts, our model indeed allows for various smoothnesses and rates of correlation decay for any number of vector components. We present the conditions on the parameter space that result in valid models with varying degrees of complexity. We discuss practical implementations, including reparameterizations to reflect the conditions on the parameter space and an iterative algorithm to increase the computational efficiency. We perform various Monte Carlo simulation experiments to explore the performances of our approach in terms of estimation and cokriging. The application of the proposed multivariate Matérn model is illustrated on two meteorological datasets: temperature/pressure over the Pacific Northwest (bivariate) and wind/temperature/pressure in Oklahoma (trivariate). In the latter case, our flexible trivariate Matérn model is valid and yields better predictive scores compared with a parsimonious model with common scale parameters.

Suggested Citation

  • Tatiyana V. Apanasovich & Marc G. Genton & Ying Sun, 2012. "A Valid Matérn Class of Cross-Covariance Functions for Multivariate Random Fields With Any Number of Components," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 180-193, March.
  • Handle: RePEc:taf:jnlasa:v:107:y:2012:i:497:p:180-193
    DOI: 10.1080/01621459.2011.643197
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2011.643197
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2011.643197?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. May, Paul & Biesecker, Matthew & Rekabdarkolaee, Hossein Moradi, 2022. "Response envelopes for linear coregionalization models," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    2. M. Bevilacqua & A. Fassò & C. Gaetan & E. Porcu & D. Velandia, 2016. "Covariance tapering for multivariate Gaussian random fields estimation," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 25(1), pages 21-37, March.
    3. Ghulam A. Qadir & Ying Sun, 2021. "Semiparametric estimation of cross‐covariance functions for multivariate random fields," Biometrics, The International Biometric Society, vol. 77(2), pages 547-560, June.
    4. Jun, Mikyoung, 2014. "Matérn-based nonstationary cross-covariance models for global processes," Journal of Multivariate Analysis, Elsevier, vol. 128(C), pages 134-146.
    5. Sara López-Pintado & Ying Sun & Juan Lin & Marc Genton, 2014. "Simplicial band depth for multivariate functional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(3), pages 321-338, September.
    6. Moreno Bevilacqua & Alfredo Alegria & Daira Velandia & Emilio Porcu, 2016. "Composite Likelihood Inference for Multivariate Gaussian Random Fields," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(3), pages 448-469, September.
    7. Moreva, Olga & Schlather, Martin, 2023. "Bivariate covariance functions of Pólya type," Journal of Multivariate Analysis, Elsevier, vol. 194(C).
    8. Guinness, Joseph, 2022. "Nonparametric spectral methods for multivariate spatial and spatial–temporal data," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
    9. Dai, Wenlin & Genton, Marc G., 2019. "Directional outlyingness for multivariate functional data," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 50-65.
    10. Emilio Porcu & Moreno Bevilacqua & Marc G. Genton, 2016. "Spatio-Temporal Covariance and Cross-Covariance Functions of the Great Circle Distance on a Sphere," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 888-898, April.
    11. Kleiber, William & Nychka, Douglas, 2012. "Nonstationary modeling for multivariate spatial processes," Journal of Multivariate Analysis, Elsevier, vol. 112(C), pages 76-91.
    12. Margaret C Johnson & Brian J Reich & Josh M Gray, 2021. "Multisensor fusion of remotely sensed vegetation indices using space‐time dynamic linear models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(3), pages 793-812, June.
    13. Alegría, Alfredo & Emery, Xavier, 2024. "Matrix-valued isotropic covariance functions with local extrema," Journal of Multivariate Analysis, Elsevier, vol. 200(C).
    14. Isabelle Grenier & Bruno Sansó & Jessica L. Matthews, 2024. "Multivariate nearest‐neighbors Gaussian processes with random covariance matrices," Environmetrics, John Wiley & Sons, Ltd., vol. 35(3), May.
    15. Moreno Bevilacqua & Ronny Vallejos & Daira Velandia, 2015. "Assessing the significance of the correlation between the components of a bivariate Gaussian random field," Environmetrics, John Wiley & Sons, Ltd., vol. 26(8), pages 545-556, December.
    16. Zhou, Yuzhen & Xiao, Yimin, 2018. "Joint asymptotics for estimating the fractal indices of bivariate Gaussian processes," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 56-72.
    17. Ip, Ryan H.L. & Li, W.K., 2017. "A class of valid Matérn cross-covariance functions for multivariate spatio-temporal random fields," Statistics & Probability Letters, Elsevier, vol. 130(C), pages 115-119.
    18. Ghulam A. Qadir & Carolina Euán & Ying Sun, 2021. "Flexible Modeling of Variable Asymmetries in Cross-Covariance Functions for Multivariate Random Fields," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(1), pages 1-22, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:107:y:2012:i:497:p:180-193. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.