IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v200y2024ics0047259x23000969.html
   My bibliography  Save this article

Matrix-valued isotropic covariance functions with local extrema

Author

Listed:
  • Alegría, Alfredo
  • Emery, Xavier

Abstract

Multivariate random fields are commonly used in spatial statistics and natural science to model coregionalized variables. In this context, the matrix-valued covariance function plays a central role in capturing their spatial continuity and interdependence. This study aims to contribute to the literature on covariance modeling by proposing new parametric families of isotropic matrix-valued functions exhibiting non-monotonic behaviors, namely hole effects and cross-dimples. The benefit of the proposed models is shown on a bivariate data set consisting of concentrations of airborne particulate matter.

Suggested Citation

  • Alegría, Alfredo & Emery, Xavier, 2024. "Matrix-valued isotropic covariance functions with local extrema," Journal of Multivariate Analysis, Elsevier, vol. 200(C).
  • Handle: RePEc:eee:jmvana:v:200:y:2024:i:c:s0047259x23000969
    DOI: 10.1016/j.jmva.2023.105250
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X23000969
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2023.105250?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nieto-Reyes, Alicia & Cuesta-Albertos, Juan Antonio & Gamboa, Fabrice, 2014. "A random-projection based test of Gaussianity for stationary processes," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 124-141.
    2. Li, Bo & Zhang, Hao, 2011. "An approach to modeling asymmetric multivariate spatial covariance structures," Journal of Multivariate Analysis, Elsevier, vol. 102(10), pages 1445-1453, November.
    3. Bellier, Edwige & Monestiez, Pascal, 2010. "A spatial covariance model with a single wave effect and a finite range," Statistics & Probability Letters, Elsevier, vol. 80(17-18), pages 1343-1347, September.
    4. Gneiting, Tilmann & Kleiber, William & Schlather, Martin, 2010. "Matérn Cross-Covariance Functions for Multivariate Random Fields," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 1167-1177.
    5. Lobato, Ignacio N. & Velasco, Carlos, 2004. "A Simple Test Of Normality For Time Series," Econometric Theory, Cambridge University Press, vol. 20(4), pages 671-689, August.
    6. Tatiyana V. Apanasovich & Marc G. Genton & Ying Sun, 2012. "A Valid Matérn Class of Cross-Covariance Functions for Multivariate Random Fields With Any Number of Components," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 180-193, March.
    7. Tatiyana V. Apanasovich & Marc G. Genton, 2010. "Cross-covariance functions for multivariate random fields based on latent dimensions," Biometrika, Biometrika Trust, vol. 97(1), pages 15-30.
    8. Moreva, Olga & Schlather, Martin, 2023. "Bivariate covariance functions of Pólya type," Journal of Multivariate Analysis, Elsevier, vol. 194(C).
    9. Faouzi, Tarik & Porcu, Emilio & Bevilacqua, Moreno & Kondrashuk, Igor, 2020. "Zastavnyi operators and positive definite radial functions," Statistics & Probability Letters, Elsevier, vol. 157(C).
    10. Renxiang Wang & Juan Du & Chunsheng Ma, 2014. "Covariance Matrix Functions of Isotropic Vector Random Fields," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 43(10-12), pages 2081-2093, May.
    11. Noel Cressie & Andrew Zammit-Mangion, 2016. "Multivariate spatial covariance models: a conditional approach," Biometrika, Biometrika Trust, vol. 103(4), pages 915-935.
    12. Francisco Gerardo Benavides-Bravo & Roberto Soto-Villalobos & José Roberto Cantú-González & Mario A. Aguirre-López & Ángela Gabriela Benavides-Ríos, 2021. "A Quadratic–Exponential Model of Variogram Based on Knowing the Maximal Variability: Application to a Rainfall Time Series," Mathematics, MDPI, vol. 9(19), pages 1-20, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghulam A. Qadir & Carolina Euán & Ying Sun, 2021. "Flexible Modeling of Variable Asymmetries in Cross-Covariance Functions for Multivariate Random Fields," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(1), pages 1-22, March.
    2. Ip, Ryan H.L. & Li, W.K., 2017. "A class of valid Matérn cross-covariance functions for multivariate spatio-temporal random fields," Statistics & Probability Letters, Elsevier, vol. 130(C), pages 115-119.
    3. Kleiber, William & Nychka, Douglas, 2012. "Nonstationary modeling for multivariate spatial processes," Journal of Multivariate Analysis, Elsevier, vol. 112(C), pages 76-91.
    4. Jun, Mikyoung, 2014. "Matérn-based nonstationary cross-covariance models for global processes," Journal of Multivariate Analysis, Elsevier, vol. 128(C), pages 134-146.
    5. Moreno Bevilacqua & Alfredo Alegria & Daira Velandia & Emilio Porcu, 2016. "Composite Likelihood Inference for Multivariate Gaussian Random Fields," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(3), pages 448-469, September.
    6. Emilio Porcu & Moreno Bevilacqua & Marc G. Genton, 2016. "Spatio-Temporal Covariance and Cross-Covariance Functions of the Great Circle Distance on a Sphere," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 888-898, April.
    7. Moreva, Olga & Schlather, Martin, 2023. "Bivariate covariance functions of Pólya type," Journal of Multivariate Analysis, Elsevier, vol. 194(C).
    8. Moreno Bevilacqua & Ronny Vallejos & Daira Velandia, 2015. "Assessing the significance of the correlation between the components of a bivariate Gaussian random field," Environmetrics, John Wiley & Sons, Ltd., vol. 26(8), pages 545-556, December.
    9. May, Paul & Biesecker, Matthew & Rekabdarkolaee, Hossein Moradi, 2022. "Response envelopes for linear coregionalization models," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    10. Li, Bo & Zhang, Hao, 2011. "An approach to modeling asymmetric multivariate spatial covariance structures," Journal of Multivariate Analysis, Elsevier, vol. 102(10), pages 1445-1453, November.
    11. Zhou, Yuzhen & Xiao, Yimin, 2018. "Joint asymptotics for estimating the fractal indices of bivariate Gaussian processes," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 56-72.
    12. S. De Iaco & M. Palma & D. Posa, 2013. "Prediction of particle pollution through spatio-temporal multivariate geostatistical analysis: spatial special issue," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(2), pages 133-150, April.
    13. Sara López-Pintado & Ying Sun & Juan Lin & Marc Genton, 2014. "Simplicial band depth for multivariate functional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(3), pages 321-338, September.
    14. Bevilacqua, Moreno & Caamaño-Carrillo, Christian & Porcu, Emilio, 2022. "Unifying compactly supported and Matérn covariance functions in spatial statistics," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    15. Margaret C Johnson & Brian J Reich & Josh M Gray, 2021. "Multisensor fusion of remotely sensed vegetation indices using space‐time dynamic linear models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(3), pages 793-812, June.
    16. Dai, Wenlin & Genton, Marc G., 2019. "Directional outlyingness for multivariate functional data," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 50-65.
    17. M. Bevilacqua & A. Fassò & C. Gaetan & E. Porcu & D. Velandia, 2016. "Covariance tapering for multivariate Gaussian random fields estimation," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 25(1), pages 21-37, March.
    18. Ghulam A. Qadir & Ying Sun, 2021. "Semiparametric estimation of cross‐covariance functions for multivariate random fields," Biometrics, The International Biometric Society, vol. 77(2), pages 547-560, June.
    19. Li, Yuqiang & Xiao, Yimin, 2011. "Multivariate operator-self-similar random fields," Stochastic Processes and their Applications, Elsevier, vol. 121(6), pages 1178-1200, June.
    20. Guinness, Joseph, 2022. "Nonparametric spectral methods for multivariate spatial and spatial–temporal data," Journal of Multivariate Analysis, Elsevier, vol. 187(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:200:y:2024:i:c:s0047259x23000969. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.