IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v45y2018i1p128-144.html
   My bibliography  Save this article

Poisson–exponential distribution: different methods of estimation

Author

Listed:
  • Giovani Carrara Rodrigues
  • Francisco Louzada
  • Pedro Luiz Ramos

Abstract

In this study, we present different estimation procedures for the parameters of the Poisson–exponential distribution, such as the maximum likelihood, method of moments, modified moments, ordinary and weighted least-squares, percentile, maximum product of spacings, Cramer–von Mises and the Anderson–Darling maximum goodness-of-fit estimators and compare them using extensive numerical simulations. We showed that the Anderson–Darling estimator is the most efficient for estimating the parameters of the proposed distribution. Our proposed methodology was also illustrated in three real data sets related to the minimum, average and the maximum flows during October at São Carlos River in Brazil demonstrating that the PE distribution is a simple alternative to be used in hydrological applications.

Suggested Citation

  • Giovani Carrara Rodrigues & Francisco Louzada & Pedro Luiz Ramos, 2018. "Poisson–exponential distribution: different methods of estimation," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(1), pages 128-144, January.
  • Handle: RePEc:taf:japsta:v:45:y:2018:i:1:p:128-144
    DOI: 10.1080/02664763.2016.1268571
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2016.1268571
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2016.1268571?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Francisco Louzada-Neto & Vicente G. Cancho & Gladys D.C. Barriga, 2011. "The Poisson--exponential distribution: a Bayesian approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(6), pages 1239-1248, April.
    2. Francisco Louzada-Neto, 1999. "Polyhazard Models for Lifetime Data," Biometrics, The International Biometric Society, vol. 55(4), pages 1281-1285, December.
    3. Cancho, Vicente G. & Louzada-Neto, Franscisco & Barriga, Gladys D.C., 2011. "The Poisson-exponential lifetime distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 677-686, January.
    4. Adamidis, K. & Loukas, S., 1998. "A lifetime distribution with decreasing failure rate," Statistics & Probability Letters, Elsevier, vol. 39(1), pages 35-42, July.
    5. Louzada, Francisco & Roman, Mari & Cancho, Vicente G., 2011. "The complementary exponential geometric distribution: Model, properties, and a comparison with its counterpart," Computational Statistics & Data Analysis, Elsevier, vol. 55(8), pages 2516-2524, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cesar Augusto Taconeli & Wagner Hugo Bonat, 2020. "On the performance of estimation methods under ranked set sampling," Computational Statistics, Springer, vol. 35(4), pages 1805-1826, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feyza Günay & Mehmet Yilmaz, 2018. "Different Parameter Estimation Methods for Exponential Geometric Distribution and Its Applications in Lifetime Data Analysis," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 8(2), pages 36-43, September.
    2. Ausaina Niyomdecha & Patchanok Srisuradetchai, 2023. "Complementary Gamma Zero-Truncated Poisson Distribution and Its Application," Mathematics, MDPI, vol. 11(11), pages 1-13, June.
    3. Silva, Rodrigo B. & Bourguignon, Marcelo & Dias, Cícero R.B. & Cordeiro, Gauss M., 2013. "The compound class of extended Weibull power series distributions," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 352-367.
    4. Bao Yiqi & Cibele Maria Russo & Vicente G. Cancho & Francisco Louzada, 2016. "Influence diagnostics for the Weibull-Negative-Binomial regression model with cure rate under latent failure causes," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(6), pages 1027-1060, May.
    5. Mahmoudi, Eisa & Sepahdar, Afsaneh, 2013. "Exponentiated Weibull–Poisson distribution: Model, properties and applications," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 92(C), pages 76-97.
    6. Rasool Roozegar & Saralees Nadarajah & Eisa Mahmoudi, 2022. "The Power Series Exponential Power Series Distributions with Applications to Failure Data Sets," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 44-78, May.
    7. Bakouch, Hassan S. & Ristić, Miroslav M. & Asgharzadeh, A. & Esmaily, L. & Al-Zahrani, Bander M., 2012. "An exponentiated exponential binomial distribution with application," Statistics & Probability Letters, Elsevier, vol. 82(6), pages 1067-1081.
    8. Bander Al-Zahrani & Areej M. AL-Zaydi, 2022. "Moments of progressively type-II censored order statistics from the complementary exponential geometric distribution and associated inference," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(3), pages 1052-1065, June.
    9. Sandeep Kumar Maurya & Saralees Nadarajah, 2021. "Poisson Generated Family of Distributions: A Review," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 484-540, November.
    10. Emrah Altun, 2019. "Two-sided exponential–geometric distribution: inference and volatility modeling," Computational Statistics, Springer, vol. 34(3), pages 1215-1245, September.
    11. Muhammad H Tahir & Gauss M. Cordeiro, 2016. "Compounding of distributions: a survey and new generalized classes," Journal of Statistical Distributions and Applications, Springer, vol. 3(1), pages 1-35, December.
    12. Bobotas, Panayiotis & Koutras, Markos V., 2019. "Distributions of the minimum and the maximum of a random number of random variables," Statistics & Probability Letters, Elsevier, vol. 146(C), pages 57-64.
    13. Mojtaba Alizadeh & Seyyed Fazel Bagheri & Mohammad Alizadeh & Saralees Nadarajah, 2017. "A new four-parameter lifetime distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(5), pages 767-797, April.
    14. Zuber Akhter & Jagdish Saran & Kanika Verma & Narinder Pushkarna, 2022. "Moments of Order Statistics from Length-Biased Exponential Distribution and Associated Inference," Annals of Data Science, Springer, vol. 9(6), pages 1257-1282, December.
    15. Manoj Kumar & Sanjay Kumar Singh & Umesh Singh, 2018. "Bayesian inference for Poisson-inverse exponential distribution under progressive type-II censoring with binomial removal," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(6), pages 1235-1249, December.
    16. Fatimah E. Almuhayfith & Mahfooz Alam & Hassan S. Bakouch & Sudeep R. Bapat & Olayan Albalawi, 2024. "Linear Combination of Order Statistics Moments from Log-Extended Exponential Geometric Distribution with Applications to Entropy," Mathematics, MDPI, vol. 12(11), pages 1-15, June.
    17. Mahmoudi, Eisa & Jafari, Ali Akbar, 2012. "Generalized exponential–power series distributions," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4047-4066.
    18. Gauss Cordeiro & Josemar Rodrigues & Mário Castro, 2012. "The exponential COM-Poisson distribution," Statistical Papers, Springer, vol. 53(3), pages 653-664, August.
    19. Liu, Xiangwei & He, Daijie & Lodewijks, Gabriel & Pang, Yusong & Mei, Jie, 2019. "Integrated decision making for predictive maintenance of belt conveyor systems," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 347-351.
    20. Gauss M. Cordeiro & Giovana O. Silva & Edwin M. M. Ortega, 2016. "An extended-G geometric family," Journal of Statistical Distributions and Applications, Springer, vol. 3(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:45:y:2018:i:1:p:128-144. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.