IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i11p2584-d1164230.html
   My bibliography  Save this article

Complementary Gamma Zero-Truncated Poisson Distribution and Its Application

Author

Listed:
  • Ausaina Niyomdecha

    (Department of Mathematics and Statistics, Faculty of Science and Technology, Thammasat University, Pathum Thani 12120, Thailand)

  • Patchanok Srisuradetchai

    (Department of Mathematics and Statistics, Faculty of Science and Technology, Thammasat University, Pathum Thani 12120, Thailand
    Thammasat University Research Unit in Theoretical and Computational Statistics, Thammasat University, Pathum Thani 12120, Thailand)

Abstract

Numerous lifetime distributions have been developed to assist researchers in various fields. This paper proposes a new continuous three-parameter lifetime distribution called the complementary gamma zero-truncated Poisson distribution (CGZTP), which combines the distribution of the maximum of a series of independently identical gamma-distributed random variables with zero-truncated Poisson random variables. The proposed distribution’s properties, including proofs of the probability density function, cumulative distribution function, survival function, hazard function, and moments, are discussed. The unknown parameters are estimated using the maximum likelihood method, whose asymptotic properties are examined. In addition, Wald confidence intervals are constructed for the CGZTP parameters. Simulation studies are conducted to evaluate the efficacy of parameter estimation, and three real-world data applications demonstrate that CGZTP can be an alternative distribution for fitting data.

Suggested Citation

  • Ausaina Niyomdecha & Patchanok Srisuradetchai, 2023. "Complementary Gamma Zero-Truncated Poisson Distribution and Its Application," Mathematics, MDPI, vol. 11(11), pages 1-13, June.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:11:p:2584-:d:1164230
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/11/2584/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/11/2584/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David Hinkley, 1977. "On Quick Choice of Power Transformation," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 26(1), pages 67-69, March.
    2. Kus, Coskun, 2007. "A new lifetime distribution," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4497-4509, May.
    3. Cancho, Vicente G. & Louzada-Neto, Franscisco & Barriga, Gladys D.C., 2011. "The Poisson-exponential lifetime distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 677-686, January.
    4. Adamidis, K. & Loukas, S., 1998. "A lifetime distribution with decreasing failure rate," Statistics & Probability Letters, Elsevier, vol. 39(1), pages 35-42, July.
    5. Louzada, Francisco & Roman, Mari & Cancho, Vicente G., 2011. "The complementary exponential geometric distribution: Model, properties, and a comparison with its counterpart," Computational Statistics & Data Analysis, Elsevier, vol. 55(8), pages 2516-2524, August.
    6. Wenhao Gui & Huainian Zhang & Lei Guo, 2017. "The Complementary Lindley-Geometric Distribution and Its Application in Lifetime Analysis," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 79(2), pages 316-335, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Silva, Rodrigo B. & Bourguignon, Marcelo & Dias, Cícero R.B. & Cordeiro, Gauss M., 2013. "The compound class of extended Weibull power series distributions," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 352-367.
    2. Feyza Günay & Mehmet Yilmaz, 2018. "Different Parameter Estimation Methods for Exponential Geometric Distribution and Its Applications in Lifetime Data Analysis," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 8(2), pages 36-43, September.
    3. Mahmoudi, Eisa & Sepahdar, Afsaneh, 2013. "Exponentiated Weibull–Poisson distribution: Model, properties and applications," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 92(C), pages 76-97.
    4. Rasool Roozegar & Saralees Nadarajah & Eisa Mahmoudi, 2022. "The Power Series Exponential Power Series Distributions with Applications to Failure Data Sets," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 44-78, May.
    5. Bakouch, Hassan S. & Ristić, Miroslav M. & Asgharzadeh, A. & Esmaily, L. & Al-Zahrani, Bander M., 2012. "An exponentiated exponential binomial distribution with application," Statistics & Probability Letters, Elsevier, vol. 82(6), pages 1067-1081.
    6. Sandeep Kumar Maurya & Saralees Nadarajah, 2021. "Poisson Generated Family of Distributions: A Review," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 484-540, November.
    7. Bao Yiqi & Cibele Maria Russo & Vicente G. Cancho & Francisco Louzada, 2016. "Influence diagnostics for the Weibull-Negative-Binomial regression model with cure rate under latent failure causes," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(6), pages 1027-1060, May.
    8. Mahmoudi, Eisa & Jafari, Ali Akbar, 2012. "Generalized exponential–power series distributions," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4047-4066.
    9. Bobotas, Panayiotis & Koutras, Markos V., 2019. "Distributions of the minimum and the maximum of a random number of random variables," Statistics & Probability Letters, Elsevier, vol. 146(C), pages 57-64.
    10. Giovani Carrara Rodrigues & Francisco Louzada & Pedro Luiz Ramos, 2018. "Poisson–exponential distribution: different methods of estimation," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(1), pages 128-144, January.
    11. Manoj Kumar & Sanjay Kumar Singh & Umesh Singh, 2018. "Bayesian inference for Poisson-inverse exponential distribution under progressive type-II censoring with binomial removal," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(6), pages 1235-1249, December.
    12. Louzada, Francisco & Roman, Mari & Cancho, Vicente G., 2011. "The complementary exponential geometric distribution: Model, properties, and a comparison with its counterpart," Computational Statistics & Data Analysis, Elsevier, vol. 55(8), pages 2516-2524, August.
    13. Bander Al-Zahrani & Areej M. AL-Zaydi, 2022. "Moments of progressively type-II censored order statistics from the complementary exponential geometric distribution and associated inference," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(3), pages 1052-1065, June.
    14. Yuancheng Si & Saralees Nadarajah, 2020. "Lindley Power Series Distributions," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(1), pages 242-256, February.
    15. Shahsanaei Fatemeh & Rezaei Sadegh & Pak Abbas, 2012. "A New Two-Parameter Lifetime Distribution with Increasing Failure Rate," Stochastics and Quality Control, De Gruyter, vol. 27(1), pages 1-17, September.
    16. Eryilmaz, Serkan, 2016. "A new class of lifetime distributions," Statistics & Probability Letters, Elsevier, vol. 112(C), pages 63-71.
    17. Chahkandi, M. & Ganjali, M., 2009. "On some lifetime distributions with decreasing failure rate," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4433-4440, October.
    18. Ibrahim Elbatal & Emrah Altun & Ahmed Z. Afify & Gamze Ozel, 2019. "The Generalized Burr XII Power Series Distributions with Properties and Applications," Annals of Data Science, Springer, vol. 6(3), pages 571-597, September.
    19. Fatimah E. Almuhayfith & Mahfooz Alam & Hassan S. Bakouch & Sudeep R. Bapat & Olayan Albalawi, 2024. "Linear Combination of Order Statistics Moments from Log-Extended Exponential Geometric Distribution with Applications to Entropy," Mathematics, MDPI, vol. 12(11), pages 1-15, June.
    20. Morais, Alice Lemos & Barreto-Souza, Wagner, 2011. "A compound class of Weibull and power series distributions," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1410-1425, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:11:p:2584-:d:1164230. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.