IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v43y2016i3p538-549.html
   My bibliography  Save this article

A test for detecting etiologic heterogeneity in epidemiological studies

Author

Listed:
  • S. Karagulle
  • Z. Kalaylioglu

Abstract

Current statistical methods for analyzing epidemiological data with disease subtype information allow us to acquire knowledge not only for risk factor-disease subtype association but also, on a more profound account, heterogeneity in these associations by multiple disease characteristics (so-called etiologic heterogeneity of the disease). Current interest, particularly in cancer epidemiology, lies in obtaining a valid p -value for testing the hypothesis whether a particular cancer is etiologically heterogeneous. We consider the two-stage logistic regression model along with pseudo-conditional likelihood estimation method and design a testing strategy based on Rao's score test. An extensive Monte Carlo simulation study is carried out, false discovery rate and statistical power of the suggested test are investigated. Simulation results indicate that applying the proposed testing strategy, even a small degree of true etiologic heterogeneity can be recovered with a large statistical power from the sampled data. The strategy is then applied on a breast cancer data set to illustrate its use in practice where there are multiple risk factors and multiple disease characteristics of simultaneous concern.

Suggested Citation

  • S. Karagulle & Z. Kalaylioglu, 2016. "A test for detecting etiologic heterogeneity in epidemiological studies," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(3), pages 538-549, March.
  • Handle: RePEc:taf:japsta:v:43:y:2016:i:3:p:538-549
    DOI: 10.1080/02664763.2015.1070808
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2015.1070808
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2015.1070808?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bull, Shelley B. & Mak, Carmen & Greenwood, Celia M. T., 2002. "A modified score function estimator for multinomial logistic regression in small samples," Computational Statistics & Data Analysis, Elsevier, vol. 39(1), pages 57-74, March.
    2. Chatterjee, Nilanjan, 2004. "A Two-Stage Regression Model for Epidemiological Studies With Multivariate Disease Classification Data," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 127-138, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xing Ju Lee & Christopher C. Drovandi & Anthony N. Pettitt, 2015. "Model choice problems using approximate Bayesian computation with applications to pathogen transmission data sets," Biometrics, The International Biometric Society, vol. 71(1), pages 198-207, March.
    2. Mukherjee, Bhramar & Liu, Ivy, 2009. "A note on bias due to fitting prospective multivariate generalized linear models to categorical outcomes ignoring retrospective sampling schemes," Journal of Multivariate Analysis, Elsevier, vol. 100(3), pages 459-472, March.
    3. Tran, Yen & Yamamoto, Toshiyuki & Sato, Hitomi & Miwa, Tomio & Morikawa, Takayuki, 2020. "The analysis of influences of attitudes on mode choice under highly unbalanced mode share patterns," Journal of choice modelling, Elsevier, vol. 36(C).
    4. Shi Chang & Rohan Singh Wilkho & Nasir Gharaibeh & Garett Sansom & Michelle Meyer & Francisco Olivera & Lei Zou, 2023. "Environmental, climatic, and situational factors influencing the probability of fatality or injury occurrence in flash flooding: a rare event logistic regression predictive model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3957-3978, April.
    5. Frischknecht, Bart D. & Eckert, Christine & Geweke, John & Louviere, Jordan J., 2014. "A simple method for estimating preference parameters for individuals," International Journal of Research in Marketing, Elsevier, vol. 31(1), pages 35-48.
    6. Gao, Sujuan & Shen, Jianzhao, 2007. "Asymptotic properties of a double penalized maximum likelihood estimator in logistic regression," Statistics & Probability Letters, Elsevier, vol. 77(9), pages 925-930, May.
    7. Julio César Hernández-Sánchez & José Luis Vicente-Villardón, 2017. "Logistic biplot for nominal data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(2), pages 307-326, June.
    8. S. Haneuse & J. Chen, 2011. "A Multiphase Design Strategy for Dealing with Participation Bias," Biometrics, The International Biometric Society, vol. 67(1), pages 309-318, March.
    9. Chung Dongjun & Keles Sunduz, 2010. "Sparse Partial Least Squares Classification for High Dimensional Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-32, March.
    10. Fabian Dvorak, 2020. "stratEst: Strategy Estimation in R," TWI Research Paper Series 119, Thurgauer Wirtschaftsinstitut, Universität Konstanz.
    11. Audrey Mauguen & Emily C. Zabor & Nancy E. Thomas & Marianne Berwick & Venkatraman E. Seshan & Colin B. Begg, 2017. "Defining Cancer Subtypes With Distinctive Etiologic Profiles: An Application to the Epidemiology of Melanoma," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 54-63, January.
    12. Kessels, Roselinde & Jones, Bradley & Goos, Peter, 2019. "Using Firth's method for model estimation and market segmentation based on choice data," Journal of choice modelling, Elsevier, vol. 31(C), pages 1-21.
    13. Stéphanie Cassilde, 2011. "La mobilité chromatique," Post-Print halshs-01574042, HAL.
    14. repec:jss:jstsof:47:c02 is not listed on IDEAS
    15. KESSELS, Roselinde & JONES, Bradley & GOOS, Peter, 2013. "An argument for preferring Firth bias-adjusted estimates in aggregate and individual-level discrete choice modeling," Working Papers 2013013, University of Antwerp, Faculty of Business and Economics.
    16. White, Ian R. & Daniel, Rhian & Royston, Patrick, 2010. "Avoiding bias due to perfect prediction in multiple imputation of incomplete categorical variables," Computational Statistics & Data Analysis, Elsevier, vol. 54(10), pages 2267-2275, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:43:y:2016:i:3:p:538-549. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.