IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v43y2016i12p2310-2324.html
   My bibliography  Save this article

Adaptive trait evolution in random environment

Author

Listed:
  • D.-C. Jhwueng
  • V. Maroulas

Abstract

Current phylogenetic comparative methods generally employ the Ornstein–Uhlenbeck(OU) process for modeling trait evolution. Being able of tracking the optimum of a trait within a group of related species, the OU process provides information about the stabilizing selection where the population mean adopts a particular trait value. The optima of a trait may follow certain stochastic dynamics along the evolutionary history. In this paper, we extend the current framework by adopting a rate of evolution which behave according to pertinent stochastic dynamics. The novel model is applied to analyze about 225 datasets collected from the existing literature. Results validate that the new framework provides a better fit for the majority of these datasets.

Suggested Citation

  • D.-C. Jhwueng & V. Maroulas, 2016. "Adaptive trait evolution in random environment," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(12), pages 2310-2324, September.
  • Handle: RePEc:taf:japsta:v:43:y:2016:i:12:p:2310-2324
    DOI: 10.1080/02664763.2016.1140729
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2016.1140729
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2016.1140729?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nash, John C., 2014. "On Best Practice Optimization Methods in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 60(i02).
    2. Dwueng-Chwuan Jhwueng, 2013. "Assessing the Goodness of Fit of Phylogenetic Comparative Methods: A Meta-Analysis and Simulation Study," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-12, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jhwueng, Dwueng-Chwuan, 2020. "Modeling rate of adaptive trait evolution using Cox–Ingersoll–Ross process: An Approximate Bayesian Computation approach," Computational Statistics & Data Analysis, Elsevier, vol. 145(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dwueng-Chwuan Jhwueng, 2021. "Two Gaussian Bridge Processes for Mapping Continuous Trait Evolution along Phylogenetic Trees," Mathematics, MDPI, vol. 9(16), pages 1-14, August.
    2. Wei Chen & Yixin Lu & Liangfei Qiu & Subodha Kumar, 2021. "Designing Personalized Treatment Plans for Breast Cancer," Information Systems Research, INFORMS, vol. 32(3), pages 932-949, September.
    3. Sameh Abdulah & Yuxiao Li & Jian Cao & Hatem Ltaief & David E. Keyes & Marc G. Genton & Ying Sun, 2023. "Large‐scale environmental data science with ExaGeoStatR," Environmetrics, John Wiley & Sons, Ltd., vol. 34(1), February.
    4. Stavrakoudis, Athanassios & Panagiotou, Dimitrios, 2016. "Price dependence and asymmetric responses between coffee varieties," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 17(2), June.
    5. Wang, Sheng & Zimmerman, Dale L. & Breheny, Patrick, 2020. "Sparsity-regularized skewness estimation for the multivariate skew normal and multivariate skew t distributions," Journal of Multivariate Analysis, Elsevier, vol. 179(C).
    6. Ghysels, Eric & Kvedaras, Virmantas & Zemlys, Vaidotas, 2016. "Mixed Frequency Data Sampling Regression Models: The R Package midasr," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 72(i04).
    7. Nicholas J. Rockwood, 2020. "Maximum Likelihood Estimation of Multilevel Structural Equation Models with Random Slopes for Latent Covariates," Psychometrika, Springer;The Psychometric Society, vol. 85(2), pages 275-300, June.
    8. Song, Jingyu & Delgado, Michael & Preckel, Paul, 2017. "Aggregated Fractional Regression Estimation: Some Monte Carlo Evidence," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258209, Agricultural and Applied Economics Association.
    9. Chelsey Hill & B. D. McCullough, 2019. "On The Accuracy of GARCH Estimation in R Packages," Econometric Research in Finance, SGH Warsaw School of Economics, Collegium of Economic Analysis, vol. 4(2), pages 133-156, December.
    10. Panagiotou Dimitrios & Stavrakoudis Athanassios, 2016. "Price Dependence between Different Beef Cuts and Quality Grades: A Copula Approach at the Retail Level for the U.S. Beef Industry," Journal of Agricultural & Food Industrial Organization, De Gruyter, vol. 14(1), pages 121-131, May.
    11. Stavrakoudis, Athanassios & Panagiotou, Dimitrios, 2016. "Price dependence between coffee qualities: a copula model to evaluate asymmetric responses," MPRA Paper 75994, University Library of Munich, Germany.
    12. Nicholas J. Rockwood, 2021. "Efficient Likelihood Estimation of Generalized Structural Equation Models with a Mix of Normal and Nonnormal Responses," Psychometrika, Springer;The Psychometric Society, vol. 86(2), pages 642-667, June.
    13. Nicholas M Sutton & Michael A Weston & Patrick J Guay & Jenna Tregoweth & James P O’Dwyer, 2021. "A Bayesian optimal escape model reveals bird species differ in their capacity to habituate to humans," Behavioral Ecology, International Society for Behavioral Ecology, vol. 32(6), pages 1064-1074.
    14. Tiandong Wang & Panpan Zhang, 2022. "Directed hybrid random networks mixing preferential attachment with uniform attachment mechanisms," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(5), pages 957-986, October.
    15. Lee, Kyungsub & Seo, Byoung Ki, 2017. "Modeling microstructure price dynamics with symmetric Hawkes and diffusion model using ultra-high-frequency stock data," Journal of Economic Dynamics and Control, Elsevier, vol. 79(C), pages 154-183.
    16. Christos Katris & Manolis G. Kavussanos, 2021. "Time series forecasting methods for the Baltic dry index," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1540-1565, December.
    17. Aurél Galántai, 2023. "A Stochastic Convergence Result for the Nelder–Mead Simplex Method," Mathematics, MDPI, vol. 11(9), pages 1-12, April.
    18. Kovalchik, Stephanie, 2020. "Extension of the Elo rating system to margin of victory," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1329-1341.
    19. Amina Shahzadi & Ting Wang & Mark Bebbington & Matthew Parry, 2023. "Inhomogeneous hidden semi-Markov models for incompletely observed point processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(2), pages 253-280, April.
    20. Shahedul A. Khan, 2018. "Exponentiated Weibull regression for time-to-event data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(2), pages 328-354, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:43:y:2016:i:12:p:2310-2324. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.