IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v43y2016i12p2150-2171.html
   My bibliography  Save this article

On elliptical multilevel models

Author

Listed:
  • Roberto F. Manghi
  • Gilberto A. Paula
  • Francisco José A. Cysneiros

Abstract

Multilevel models have been widely applied to analyze data sets which present some hierarchical structure. In this paper we propose a generalization of the normal multilevel models, named elliptical multilevel models. This proposal suggests the use of distributions in the elliptical class, thus involving all symmetric continuous distributions, including the normal distribution as a particular case. Elliptical distributions may have lighter or heavier tails than the normal ones. In the case of normal error models with the presence of outlying observations, heavy-tailed error models may be applied to accommodate such observations. In particular, we discuss some aspects of the elliptical multilevel models, such as maximum likelihood estimation and residual analysis to assess features related to the fitting and the model assumptions. Finally, two motivating examples analyzed under normal multilevel models are reanalyzed under Student-t and power exponential multilevel models. Comparisons with the normal multilevel model are performed by using residual analysis.

Suggested Citation

  • Roberto F. Manghi & Gilberto A. Paula & Francisco José A. Cysneiros, 2016. "On elliptical multilevel models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(12), pages 2150-2171, September.
  • Handle: RePEc:taf:japsta:v:43:y:2016:i:12:p:2150-2171
    DOI: 10.1080/02664763.2015.1134445
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2015.1134445
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2015.1134445?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Manuel Galea & Gilberto Paula & Miguel Uribe-Opazo, 2003. "On influence diagnostic in univariate elliptical linear regression models," Statistical Papers, Springer, vol. 44(1), pages 23-45, January.
    2. J. K. Lindsey, 1999. "Multivariate Elliptically Contoured Distributions for Repeated Measurements," Biometrics, The International Biometric Society, vol. 55(4), pages 1277-1280, December.
    3. Kloke, John D. & McKean, Joseph W. & Rashid, M. Mushfiqur, 2009. "Rank-Based Estimation and Associated Inferences for Linear Models With Cluster Correlated Errors," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 384-390.
    4. Osorio, Felipe & Paula, Gilberto A. & Galea, Manuel, 2007. "Assessment of local influence in elliptical linear models with longitudinal structure," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4354-4368, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ying Liu & Fang Luo & Danhui Zhang & Hongyun Liu, 2017. "Comparison and robustness of the REML, ML, MIVQUE estimators for multi-level random mediation model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(9), pages 1644-1661, July.
    2. Aline B. Tsuyuguchi & Gilberto A. Paula & Michelli Barros, 2020. "Analysis of correlated Birnbaum–Saunders data based on estimating equations," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(3), pages 661-681, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joelmir A. Borssoi & Gilberto A. Paula & Manuel Galea, 2020. "Elliptical linear mixed models with a covariate subject to measurement error," Statistical Papers, Springer, vol. 61(1), pages 31-69, February.
    2. Osorio, Felipe & Paula, Gilberto A. & Galea, Manuel, 2007. "Assessment of local influence in elliptical linear models with longitudinal structure," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4354-4368, May.
    3. Michelli Barros & Manuel Galea & Víctor Leiva & Manoel Santos-Neto, 2018. "Generalized Tobit models: diagnostics and application in econometrics," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(1), pages 145-167, January.
    4. Ibacache-Pulgar, Germán & Paula, Gilberto A., 2011. "Local influence for Student-t partially linear models," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1462-1478, March.
    5. Fernanda De Bastiani & Audrey Mariz de Aquino Cysneiros & Miguel Uribe-Opazo & Manuel Galea, 2015. "Influence diagnostics in elliptical spatial linear models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(2), pages 322-340, June.
    6. Eckhard Liebscher & Wolf-Dieter Richter, 2016. "Estimation of Star-Shaped Distributions," Risks, MDPI, vol. 4(4), pages 1-37, November.
    7. Jinguo Gao & Omer Ozturk, 2017. "Rank regression in order restricted randomised designs," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(2), pages 231-257, April.
    8. Robert G. Aykroyd & Víctor Leiva & Carolina Marchant, 2018. "Multivariate Birnbaum-Saunders Distributions: Modelling and Applications," Risks, MDPI, vol. 6(1), pages 1-25, March.
    9. Barros, Michelli & Paula, Gilberto A. & Leiva, Víctor, 2009. "An R implementation for generalized Birnbaum-Saunders distributions," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1511-1528, February.
    10. Julio M. Singer & Francisco M.M. Rocha & Juvêncio S. Nobre, 2017. "Graphical Tools for Detecting Departures from Linear Mixed Model Assumptions and Some Remedial Measures," International Statistical Review, International Statistical Institute, vol. 85(2), pages 290-324, August.
    11. Utkarsh J. Dang & Michael P.B. Gallaugher & Ryan P. Browne & Paul D. McNicholas, 2023. "Model-Based Clustering and Classification Using Mixtures of Multivariate Skewed Power Exponential Distributions," Journal of Classification, Springer;The Classification Society, vol. 40(1), pages 145-167, April.
    12. repec:bla:biomet:v:71:y:2015:i:4:p:1081-1089 is not listed on IDEAS
    13. Chun-Zheng Cao & Jin-Guan Lin & Li-Xing Zhu, 2010. "Heteroscedasticity and/or autocorrelation diagnostics in nonlinear models with AR(1) and symmetrical errors," Statistical Papers, Springer, vol. 51(4), pages 813-836, December.
    14. Hanns de la Fuente-Mella & Rolando Rubilar & Karime Chahuán-Jiménez & Víctor Leiva, 2021. "Modeling COVID-19 Cases Statistically and Evaluating Their Effect on the Economy of Countries," Mathematics, MDPI, vol. 9(13), pages 1-13, July.
    15. Melody Denhere & Huybrechts F. Bindele, 2016. "Rank estimation for the functional linear model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(10), pages 1928-1944, August.
    16. Cysneiros, Francisco José A. & Paula, Gilberto A. & Galea, Manuel, 2007. "Heteroscedastic symmetrical linear models," Statistics & Probability Letters, Elsevier, vol. 77(11), pages 1084-1090, June.
    17. Vinicius Q. S. Maior & Francisco José A. Cysneiros, 2018. "SYMARMA: a new dynamic model for temporal data on conditional symmetric distribution," Statistical Papers, Springer, vol. 59(1), pages 75-97, March.
    18. V. Lachos & T. Angolini & C. Abanto-Valle, 2011. "On estimation and local influence analysis for measurement errors models under heavy-tailed distributions," Statistical Papers, Springer, vol. 52(3), pages 567-590, August.
    19. Alcantara, Izabel Cristina & Cysneiros, Francisco José A., 2013. "Linear regression models with slash-elliptical errors," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 153-164.
    20. Carolina Marchant & Víctor Leiva & Francisco José A. Cysneiros & Juan F. Vivanco, 2016. "Diagnostics in multivariate generalized Birnbaum-Saunders regression models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(15), pages 2829-2849, November.
    21. Wagner J. F. Silva & Renata M. C. R. Souza & F. J. A. Cysneiros, 2022. "Bivariate elliptical regression for modeling interval-valued data," Computational Statistics, Springer, vol. 37(4), pages 2003-2028, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:43:y:2016:i:12:p:2150-2171. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.