IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v42y2015i9p1877-1895.html
   My bibliography  Save this article

Segmented classification analysis with a class of rectangle-screened elliptical populations

Author

Listed:
  • Hea-Jung Kim

Abstract

In many practical situations, a statistical practitioner often faces a problem of classifying an object from one of the segmented (or screened) populations where the segmentation was conducted by a set of screening variables. This paper addresses this problem, proposing and studying yet another optimal rule for classification with segmented populations. A class of q -dimensional rectangle-screened elliptically contoured (RSEC) distributions is considered for flexibly modeling the segmented populations. Based on the properties of the RSEC distributions, a parametric procedure for the segmented classification analysis (SCA) is proposed. This includes motivation for the SCA as well as some theoretical propositions regarding its optimal rule and properties. These properties allow us to establish other important results which include an efficient estimation of the rule by the Monte Carlo expectation-conditional maximization algorithm and an optimal variable selection procedure. Two numerical examples making use of utilizing a simulation study and a real dataset application and advocating the SCA procedure are also provided.

Suggested Citation

  • Hea-Jung Kim, 2015. "Segmented classification analysis with a class of rectangle-screened elliptical populations," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(9), pages 1877-1895, September.
  • Handle: RePEc:taf:japsta:v:42:y:2015:i:9:p:1877-1895
    DOI: 10.1080/02664763.2015.1014886
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2015.1014886
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2015.1014886?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Srivastava, M. S., 1984. "A measure of skewness and kurtosis and a graphical method for assessing multivariate normality," Statistics & Probability Letters, Elsevier, vol. 2(5), pages 263-267, October.
    2. Branco, Márcia D. & Dey, Dipak K., 2001. "A General Class of Multivariate Skew-Elliptical Distributions," Journal of Multivariate Analysis, Elsevier, vol. 79(1), pages 99-113, October.
    3. Barry Arnold & Robert Beaver & A. Azzalini & N. Balakrishnan & A. Bhaumik & D. Dey & C. Cuadras & J. Sarabia & Barry Arnold & Robert Beaver, 2002. "Skewed multivariate models related to hidden truncation and/or selective reporting," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 11(1), pages 7-54, June.
    4. Barry Arnold & Robert Beaver & Richard Groeneveld & William Meeker, 1993. "The nontruncated marginal of a truncated bivariate normal distribution," Psychometrika, Springer;The Psychometric Society, vol. 58(3), pages 471-488, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ley, Christophe & Paindaveine, Davy, 2010. "On the singularity of multivariate skew-symmetric models," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1434-1444, July.
    2. M. C. Jones, 2015. "On Families of Distributions with Shape Parameters," International Statistical Review, International Statistical Institute, vol. 83(2), pages 175-192, August.
    3. Dey, Dipak K. & Liu, Junfeng, 2005. "A new construction for skew multivariate distributions," Journal of Multivariate Analysis, Elsevier, vol. 95(2), pages 323-344, August.
    4. Sreenivasa Rao Jammalamadaka & Emanuele Taufer & Gyorgy H. Terdik, 2021. "On Multivariate Skewness and Kurtosis," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 607-644, August.
    5. Ferreira, Jose T.A.S. & Steel, Mark F.J., 2007. "Model comparison of coordinate-free multivariate skewed distributions with an application to stochastic frontiers," Journal of Econometrics, Elsevier, vol. 137(2), pages 641-673, April.
    6. Sharon Lee & Geoffrey McLachlan, 2013. "On mixtures of skew normal and skew $$t$$ -distributions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 7(3), pages 241-266, September.
    7. Basso, Rodrigo M. & Lachos, Víctor H. & Cabral, Celso Rômulo Barbosa & Ghosh, Pulak, 2010. "Robust mixture modeling based on scale mixtures of skew-normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 2926-2941, December.
    8. Antonio Canale & Euloge Clovis Kenne Pagui & Bruno Scarpa, 2016. "Bayesian modeling of university first-year students' grades after placement test," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(16), pages 3015-3029, December.
    9. V. G. Cancho & Reiko Aoki & V. H. Lachos, 2008. "Bayesian analysis for a skew extension of the multivariate null intercept measurement error model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(11), pages 1239-1251.
    10. Hea-Jung Kim, 2015. "A best linear threshold classification with scale mixture of skew normal populations," Computational Statistics, Springer, vol. 30(1), pages 1-28, March.
    11. Kim, Hyoung-Moon & Ryu, Duchwan & Mallick, Bani K. & Genton, Marc G., 2014. "Mixtures of skewed Kalman filters," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 228-251.
    12. M. Sharafi & J. Behboodian, 2008. "The Balakrishnan skew–normal density," Statistical Papers, Springer, vol. 49(4), pages 769-778, October.
    13. Sharon Lee & Geoffrey McLachlan, 2013. "Model-based clustering and classification with non-normal mixture distributions," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 22(4), pages 427-454, November.
    14. Jose T.A.S. Ferreira & Mark F.J. Steel, 2004. "Bayesian Multivariate Regression Analysis with a New Class of Skewed Distributions," Econometrics 0403001, University Library of Munich, Germany.
    15. Panagiotelis, Anastasios & Smith, Michael, 2010. "Bayesian skew selection for multivariate models," Computational Statistics & Data Analysis, Elsevier, vol. 54(7), pages 1824-1839, July.
    16. Vernic, Raluca, 2006. "Multivariate skew-normal distributions with applications in insurance," Insurance: Mathematics and Economics, Elsevier, vol. 38(2), pages 413-426, April.
    17. Zinoviy Landsman & Udi Makov & Tomer Shushi, 2017. "Extended Generalized Skew-Elliptical Distributions and their Moments," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 79(1), pages 76-100, February.
    18. Ogundimu, Emmanuel O. & Hutton, Jane L., 2015. "On the extended two-parameter generalized skew-normal distribution," Statistics & Probability Letters, Elsevier, vol. 100(C), pages 142-148.
    19. Hossein Negarestani & Ahad Jamalizadeh & Sobhan Shafiei & Narayanaswamy Balakrishnan, 2019. "Mean mixtures of normal distributions: properties, inference and application," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(4), pages 501-528, May.
    20. Dylan Molenaar & Conor Dolan & Paul Boeck, 2012. "The Heteroscedastic Graded Response Model with a Skewed Latent Trait: Testing Statistical and Substantive Hypotheses Related to Skewed Item Category Functions," Psychometrika, Springer;The Psychometric Society, vol. 77(3), pages 455-478, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:42:y:2015:i:9:p:1877-1895. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.