IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v41y2014i7p1486-1503.html
   My bibliography  Save this article

A Poisson geometric process approach for predicting drop-out and committed first-time blood donors

Author

Listed:
  • J.S.K. Chan
  • W.Y. Wan
  • P.L.H. Yu

Abstract

A Poisson geometric process (PGP) model is proposed to study individual blood donation patterns for a blood donor retention program. Extended from the geometric process (GP) model of Lam [16], the PGP model captures the rather pronounced trend patterns across clusters of donors via the ratio parameters in a mixture setting. Within the state-space modeling framework, it allows for overdispersion by equating the mean of the Poisson data distribution to a latent GP. Alternatively, by simply setting, the mean of the Poisson distribution to be the mean of a GP, it has equidispersion. With the group-specific mean and ratio functions, the mixture PGP model facilitates classification of donors into committed, drop-out and one-time groups. Based on only two years of observations, the PGP model nicely predicts donors' future donations to foster timely recruitment decision. The model is implemented using a Bayesian approach via the user-friendly software WinBUGS.

Suggested Citation

  • J.S.K. Chan & W.Y. Wan & P.L.H. Yu, 2014. "A Poisson geometric process approach for predicting drop-out and committed first-time blood donors," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(7), pages 1486-1503, July.
  • Handle: RePEc:taf:japsta:v:41:y:2014:i:7:p:1486-1503
    DOI: 10.1080/02664763.2014.881781
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2014.881781
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2014.881781?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. Durbin & S. J. Koopman, 2000. "Time series analysis of non‐Gaussian observations based on state space models from both classical and Bayesian perspectives," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(1), pages 3-56.
    2. Wan, Wai-Yin & Chan, Jennifer So-Kuen, 2011. "Bayesian analysis of robust Poisson geometric process model using heavy-tailed distributions," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 687-702, January.
    3. Lam Yeh & So Kuen Chan, 1998. "Statistical inference for geometric processes with lognormal distribution," Computational Statistics & Data Analysis, Elsevier, vol. 27(1), pages 99-112, March.
    4. Richard A. Davis, 2003. "Observation-driven models for Poisson counts," Biometrika, Biometrika Trust, vol. 90(4), pages 777-790, December.
    5. Chan, Jennifer S. K. & Lam, Yeh & Leung, Doris Y. P., 2004. "Statistical inference for geometric processes with gamma distributions," Computational Statistics & Data Analysis, Elsevier, vol. 47(3), pages 565-581, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arnold, Richard & Chukova, Stefanka & Hayakawa, Yu & Marshall, Sarah, 2020. "Geometric-Like Processes: An Overview and Some Reliability Applications," Reliability Engineering and System Safety, Elsevier, vol. 201(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chan, Jennifer So Kuen & Wan, Wai Yin, 2014. "Multivariate generalized Poisson geometric process model with scale mixtures of normal distributions," Journal of Multivariate Analysis, Elsevier, vol. 127(C), pages 72-87.
    2. Arnold, Richard & Chukova, Stefanka & Hayakawa, Yu & Marshall, Sarah, 2020. "Geometric-Like Processes: An Overview and Some Reliability Applications," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    3. Jung, Robert C. & Kukuk, Martin & Liesenfeld, Roman, 2006. "Time series of count data: modeling, estimation and diagnostics," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2350-2364, December.
    4. Vêlayoudom Marimoutou & Manel Soury, 2015. "Energy Markets and CO2 Emissions: Analysis by Stochastic Copula Autoregressive Model," AMSE Working Papers 1520, Aix-Marseille School of Economics, France.
    5. Robert Jung & A. Tremayne, 2011. "Useful models for time series of counts or simply wrong ones?," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 95(1), pages 59-91, March.
    6. Chen, Jianwei & Li, Kim-Hung & Lam, Yeh, 2010. "Bayesian computation for geometric process in maintenance problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(4), pages 771-781.
    7. Alzahrani, Naif & Neal, Peter & Spencer, Simon E.F. & McKinley, Trevelyan J. & Touloupou, Panayiota, 2018. "Model selection for time series of count data," Computational Statistics & Data Analysis, Elsevier, vol. 122(C), pages 33-44.
    8. Chan, J.S.K. & Lam, C.P.Y. & Yu, P.L.H. & Choy, S.T.B. & Chen, C.W.S., 2012. "A Bayesian conditional autoregressive geometric process model for range data," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3006-3019.
    9. Vêlayoudom Marimoutou & Manel Soury, 2015. "Energy Markets and CO2 Emissions: Analysis by Stochastic Copula Autoregressive Model," Working Papers halshs-01148746, HAL.
    10. Vurukonda Sathish & Siuli Mukhopadhyay & Rashmi Tiwari, 2022. "Autoregressive and moving average models for zero‐inflated count time series," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 76(2), pages 190-218, May.
    11. Marimoutou, Vêlayoudom & Soury, Manel, 2015. "Energy markets and CO2 emissions: Analysis by stochastic copula autoregressive model," Energy, Elsevier, vol. 88(C), pages 417-429.
    12. Aydogdu, Halil & Kara, Mahmut, 2012. "Nonparametric estimation in [alpha]-series processes," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 190-201, January.
    13. Francesco Calvori & Drew Creal & Siem Jan Koopman & Andre Lucas, 2014. "Testing for Parameter Instability in Competing Modeling Frameworks," Tinbergen Institute Discussion Papers 14-010/IV/DSF71, Tinbergen Institute.
    14. Ralph D. Snyder & Gael M. Martin & Phillip Gould & Paul D. Feigin, 2007. "An Assessment of Alternative State Space Models for Count Time Series," Monash Econometrics and Business Statistics Working Papers 4/07, Monash University, Department of Econometrics and Business Statistics.
    15. Jennifer Chan & Doris Leung, 2010. "Binary geometric process model for the modeling of longitudinal binary data with trend," Computational Statistics, Springer, vol. 25(3), pages 505-536, September.
    16. Yao Rao & David Harris & Brendan McCabe, 2022. "A semi‐parametric integer‐valued autoregressive model with covariates," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(3), pages 495-516, June.
    17. Motta, Anderson C. O. & Hotta, Luiz K., 2003. "Exact Maximum Likelihood and Bayesian Estimation of the Stochastic Volatility Model," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 23(2), November.
    18. Maravall, A. & del Rio, A., 2007. "Temporal aggregation, systematic sampling, and the Hodrick-Prescott filter," Computational Statistics & Data Analysis, Elsevier, vol. 52(2), pages 975-998, October.
    19. Bidarkota, Prasad V. & Dupoyet, Brice V. & McCulloch, J. Huston, 2009. "Asset pricing with incomplete information and fat tails," Journal of Economic Dynamics and Control, Elsevier, vol. 33(6), pages 1314-1331, June.
    20. Strickland, Chris M. & Martin, Gael M. & Forbes, Catherine S., 2008. "Parameterisation and efficient MCMC estimation of non-Gaussian state space models," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2911-2930, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:41:y:2014:i:7:p:1486-1503. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.